{"title":"黎曼ζ函数理论中的一个解析估计及Báez-Duarte的一个定理。","authors":"Jean-François Burnol","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>On the Riemann hypothesis we establish a uniform upper estimate for zeta(s)/zeta (s + A), 0 < or = A, on the critical line. We use this to give a purely complex-analytic variant of Báez-Duarte's proof of a strengthened Nyman-Beurling criterion for the validity of the Riemann Hypothesis. We investigate function-theoretically some of the functions defined by Báez-Duarte in his study and we show that their square-integrability is, in itself, an equivalent formulation of the Riemann Hypothesis. We conclude with a third equivalent formulation which resembles a \"causality\" statement.</p>","PeriodicalId":75378,"journal":{"name":"Acta cientifica venezolana","volume":"54 3","pages":"210-5"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On an analytic estimate in the theory of the Riemann zeta function and a theorem of Báez-Duarte.\",\"authors\":\"Jean-François Burnol\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On the Riemann hypothesis we establish a uniform upper estimate for zeta(s)/zeta (s + A), 0 < or = A, on the critical line. We use this to give a purely complex-analytic variant of Báez-Duarte's proof of a strengthened Nyman-Beurling criterion for the validity of the Riemann Hypothesis. We investigate function-theoretically some of the functions defined by Báez-Duarte in his study and we show that their square-integrability is, in itself, an equivalent formulation of the Riemann Hypothesis. We conclude with a third equivalent formulation which resembles a \\\"causality\\\" statement.</p>\",\"PeriodicalId\":75378,\"journal\":{\"name\":\"Acta cientifica venezolana\",\"volume\":\"54 3\",\"pages\":\"210-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta cientifica venezolana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta cientifica venezolana","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在Riemann假设上,我们建立了临界线上zeta(s)/zeta (s + a), 0 <或= a的统一上估计。我们用它来给出Báez-Duarte证明黎曼假设有效性的一个加强的尼曼-伯林判据的一个纯复解析变式。在他的研究中,我们从理论上研究了Báez-Duarte定义的一些函数,并证明了它们的平方可积性本身就是黎曼假设的等价形式。我们以类似于“因果关系”陈述的第三个等效公式得出结论。
On an analytic estimate in the theory of the Riemann zeta function and a theorem of Báez-Duarte.
On the Riemann hypothesis we establish a uniform upper estimate for zeta(s)/zeta (s + A), 0 < or = A, on the critical line. We use this to give a purely complex-analytic variant of Báez-Duarte's proof of a strengthened Nyman-Beurling criterion for the validity of the Riemann Hypothesis. We investigate function-theoretically some of the functions defined by Báez-Duarte in his study and we show that their square-integrability is, in itself, an equivalent formulation of the Riemann Hypothesis. We conclude with a third equivalent formulation which resembles a "causality" statement.