{"title":"等涡量深水重力-毛细波非线性Schrödinger方程","authors":"M. I. Shishina","doi":"10.1134/S0015462822601851","DOIUrl":null,"url":null,"abstract":"<p>The surface gravity-capillary waves on deep water with constant vorticity in the region bounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformal variables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"58 1","pages":"72 - 83"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Nonlinear Schrödinger Equation for Gravity-Capillary Waves on Deep Water with Constant Vorticity\",\"authors\":\"M. I. Shishina\",\"doi\":\"10.1134/S0015462822601851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The surface gravity-capillary waves on deep water with constant vorticity in the region bounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformal variables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"58 1\",\"pages\":\"72 - 83\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462822601851\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462822601851","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
A Nonlinear Schrödinger Equation for Gravity-Capillary Waves on Deep Water with Constant Vorticity
The surface gravity-capillary waves on deep water with constant vorticity in the region bounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformal variables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.