{"title":"在聚结过程的初始阶段,流体厚度下降的传质","authors":"A. Yu. Il’inykh, Yu. D. Chashechkin","doi":"10.1134/S0015462822601607","DOIUrl":null,"url":null,"abstract":"<p>High-speed videorecording is used to trace the fine structure evolution in the case of freely falling drop matter propagation beneath the deformed surface of a fluid, initially at rest. The coalescence of a water drop with ammonium rhodanide solution and drops of sodium chloride solution, sodium carbonate, and ink with water is studied. In the initial stage of the coalescence process occurring in the impact regime with rapid cavity formation the drop loses the continuity. Short thin jetlets penetrating the cavity bottom are visualized for the first time. The earlier-observed drop disintegration into thin fibers that form linear or reticular structures on the cavity and crown surfaces is confirmed. The jetlets that contain the drop matter merge gradually and form an intermediate fibrous layer embracing the cavity; this layer possesses a well-defined outer boundary. As the cavity enlarges, the intermediate layer homogenizes and becomes thinner. Further on, in the process of cavity collapse new fiber groups are formed in the target fluid; they penetrate the cavity boundary beneath the grid nodes. In the experiments performed the fibrous layer embracing the primary cavity was observable, when a fluid of greater density (ink, sodium carbonate, or sodium chloride solution drops) intruded into a less dense medium (water) or when a fluid of smaller density (water droplets) was introduced into a heavier fluid (ammonium rhodanide solution). The fibrous shell of the primary cavity becomes thicker with increase in the drop velocity.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"58 1","pages":"31 - 44"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Transfer from a Drop in Fall into the Fluid Thickness in the Initial Stage of the Coalescence Process\",\"authors\":\"A. Yu. Il’inykh, Yu. D. Chashechkin\",\"doi\":\"10.1134/S0015462822601607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-speed videorecording is used to trace the fine structure evolution in the case of freely falling drop matter propagation beneath the deformed surface of a fluid, initially at rest. The coalescence of a water drop with ammonium rhodanide solution and drops of sodium chloride solution, sodium carbonate, and ink with water is studied. In the initial stage of the coalescence process occurring in the impact regime with rapid cavity formation the drop loses the continuity. Short thin jetlets penetrating the cavity bottom are visualized for the first time. The earlier-observed drop disintegration into thin fibers that form linear or reticular structures on the cavity and crown surfaces is confirmed. The jetlets that contain the drop matter merge gradually and form an intermediate fibrous layer embracing the cavity; this layer possesses a well-defined outer boundary. As the cavity enlarges, the intermediate layer homogenizes and becomes thinner. Further on, in the process of cavity collapse new fiber groups are formed in the target fluid; they penetrate the cavity boundary beneath the grid nodes. In the experiments performed the fibrous layer embracing the primary cavity was observable, when a fluid of greater density (ink, sodium carbonate, or sodium chloride solution drops) intruded into a less dense medium (water) or when a fluid of smaller density (water droplets) was introduced into a heavier fluid (ammonium rhodanide solution). The fibrous shell of the primary cavity becomes thicker with increase in the drop velocity.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"58 1\",\"pages\":\"31 - 44\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462822601607\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462822601607","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Mass Transfer from a Drop in Fall into the Fluid Thickness in the Initial Stage of the Coalescence Process
High-speed videorecording is used to trace the fine structure evolution in the case of freely falling drop matter propagation beneath the deformed surface of a fluid, initially at rest. The coalescence of a water drop with ammonium rhodanide solution and drops of sodium chloride solution, sodium carbonate, and ink with water is studied. In the initial stage of the coalescence process occurring in the impact regime with rapid cavity formation the drop loses the continuity. Short thin jetlets penetrating the cavity bottom are visualized for the first time. The earlier-observed drop disintegration into thin fibers that form linear or reticular structures on the cavity and crown surfaces is confirmed. The jetlets that contain the drop matter merge gradually and form an intermediate fibrous layer embracing the cavity; this layer possesses a well-defined outer boundary. As the cavity enlarges, the intermediate layer homogenizes and becomes thinner. Further on, in the process of cavity collapse new fiber groups are formed in the target fluid; they penetrate the cavity boundary beneath the grid nodes. In the experiments performed the fibrous layer embracing the primary cavity was observable, when a fluid of greater density (ink, sodium carbonate, or sodium chloride solution drops) intruded into a less dense medium (water) or when a fluid of smaller density (water droplets) was introduced into a heavier fluid (ammonium rhodanide solution). The fibrous shell of the primary cavity becomes thicker with increase in the drop velocity.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.