{"title":"大迎角下非平衡超声速流过钝板","authors":"S. T. Surzhikov","doi":"10.1134/S0015462822700033","DOIUrl":null,"url":null,"abstract":"<p>The computational model designed for studying the processes of non-equilibrium physicochemical gas dynamics in supersonic rarefied-air flow past a blunt plate of finite dimensions under the laboratory experiment conditions is formulated. The computational model is based on the two-dimensional Navier–Stokes equations, the energy conservation laws for the translational degrees of freedom of atoms and molecules and the vibrational degrees of freedom of diatomic molecules, and the chemical kinetics and diffusion equations for individual components of partially ionized gas flow. The basic gas dynamic and kinetic processes in flow past a blunt plate are analyzed at the Mach numbers M = 10 and 20. It is shown that regions of thermal nonequilibrium are formed.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"58 1","pages":"113 - 127"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0015462822700033.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-Equilibrium Supersonic Flow Past a Blunt Plate at High Angle of Attack\",\"authors\":\"S. T. Surzhikov\",\"doi\":\"10.1134/S0015462822700033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The computational model designed for studying the processes of non-equilibrium physicochemical gas dynamics in supersonic rarefied-air flow past a blunt plate of finite dimensions under the laboratory experiment conditions is formulated. The computational model is based on the two-dimensional Navier–Stokes equations, the energy conservation laws for the translational degrees of freedom of atoms and molecules and the vibrational degrees of freedom of diatomic molecules, and the chemical kinetics and diffusion equations for individual components of partially ionized gas flow. The basic gas dynamic and kinetic processes in flow past a blunt plate are analyzed at the Mach numbers M = 10 and 20. It is shown that regions of thermal nonequilibrium are formed.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"58 1\",\"pages\":\"113 - 127\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0015462822700033.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462822700033\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462822700033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Non-Equilibrium Supersonic Flow Past a Blunt Plate at High Angle of Attack
The computational model designed for studying the processes of non-equilibrium physicochemical gas dynamics in supersonic rarefied-air flow past a blunt plate of finite dimensions under the laboratory experiment conditions is formulated. The computational model is based on the two-dimensional Navier–Stokes equations, the energy conservation laws for the translational degrees of freedom of atoms and molecules and the vibrational degrees of freedom of diatomic molecules, and the chemical kinetics and diffusion equations for individual components of partially ionized gas flow. The basic gas dynamic and kinetic processes in flow past a blunt plate are analyzed at the Mach numbers M = 10 and 20. It is shown that regions of thermal nonequilibrium are formed.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.