{"title":"在均匀静电场中振荡的弱电荷液滴的非线性单极子和偶极子声辐射","authors":"A. I. Grigor’ev, N. Yu. Kolbneva, S. O. Shiryaeva","doi":"10.1134/S0015462822080031","DOIUrl":null,"url":null,"abstract":"<p>Asymptotic calculations of the second order of smallness for a small dimensionless amplitude of the oscillation of droplets of natural origin in a material environment in an intracloud or ground-level electric field are used to show that, among other modes, the zero and the first mode of droplet oscillations are excited, which do not occur in calculations made in the first order of smallness. The intensity of acoustic radiation in such modes is calculated using the model of an ideal noncompressible electrically conductive fluid. The monopole acoustic radiation of a droplet is shown to be six orders of magnitude more intense than the dipole radiation. In an approximation quadratic in terms of the dimensionless oscillation amplitude, the monopole radiation intensity does not depend on the droplet radius and the strength of the external electric field, while the dipole-radiation intensity greatly depends on the droplet radius. The dependence of the strength of the electric field only appears in the third order of smallness. Oscillating rain droplets emit acoustic radiation in the audible frequency range, while cloud and fog droplets, in the ultrasonic range. The time dependence of acoustic radiation of a droplet of both monopole and dipole type under the initial excitation of a finite segment of the continuous spectrum of modes has the form of beats.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"57 8","pages":"982 - 997"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear Monopole and Dipole Acoustic Radiation of a Weakly Charged Droplet Oscillating in a Uniform Electrostatic Field\",\"authors\":\"A. I. Grigor’ev, N. Yu. Kolbneva, S. O. Shiryaeva\",\"doi\":\"10.1134/S0015462822080031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Asymptotic calculations of the second order of smallness for a small dimensionless amplitude of the oscillation of droplets of natural origin in a material environment in an intracloud or ground-level electric field are used to show that, among other modes, the zero and the first mode of droplet oscillations are excited, which do not occur in calculations made in the first order of smallness. The intensity of acoustic radiation in such modes is calculated using the model of an ideal noncompressible electrically conductive fluid. The monopole acoustic radiation of a droplet is shown to be six orders of magnitude more intense than the dipole radiation. In an approximation quadratic in terms of the dimensionless oscillation amplitude, the monopole radiation intensity does not depend on the droplet radius and the strength of the external electric field, while the dipole-radiation intensity greatly depends on the droplet radius. The dependence of the strength of the electric field only appears in the third order of smallness. Oscillating rain droplets emit acoustic radiation in the audible frequency range, while cloud and fog droplets, in the ultrasonic range. The time dependence of acoustic radiation of a droplet of both monopole and dipole type under the initial excitation of a finite segment of the continuous spectrum of modes has the form of beats.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":\"57 8\",\"pages\":\"982 - 997\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0015462822080031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462822080031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Nonlinear Monopole and Dipole Acoustic Radiation of a Weakly Charged Droplet Oscillating in a Uniform Electrostatic Field
Asymptotic calculations of the second order of smallness for a small dimensionless amplitude of the oscillation of droplets of natural origin in a material environment in an intracloud or ground-level electric field are used to show that, among other modes, the zero and the first mode of droplet oscillations are excited, which do not occur in calculations made in the first order of smallness. The intensity of acoustic radiation in such modes is calculated using the model of an ideal noncompressible electrically conductive fluid. The monopole acoustic radiation of a droplet is shown to be six orders of magnitude more intense than the dipole radiation. In an approximation quadratic in terms of the dimensionless oscillation amplitude, the monopole radiation intensity does not depend on the droplet radius and the strength of the external electric field, while the dipole-radiation intensity greatly depends on the droplet radius. The dependence of the strength of the electric field only appears in the third order of smallness. Oscillating rain droplets emit acoustic radiation in the audible frequency range, while cloud and fog droplets, in the ultrasonic range. The time dependence of acoustic radiation of a droplet of both monopole and dipole type under the initial excitation of a finite segment of the continuous spectrum of modes has the form of beats.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.