David M Asmuth, Nan Wang, Ying Lu, Xiao-Dong Li, Lisa Reece, Nicholas H A Terry, Richard B Pollard, Mostafa Nokta, James F Leary, R Allen White
{"title":"hiv感染的正常淋巴细胞的细胞周期动力学失调。","authors":"David M Asmuth, Nan Wang, Ying Lu, Xiao-Dong Li, Lisa Reece, Nicholas H A Terry, Richard B Pollard, Mostafa Nokta, James F Leary, R Allen White","doi":"10.1002/cyto.a.20148","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Viruses alter cellular gene transcription and protein binding at many steps critical for cell cycle regulation to optimize the milieu for productive infection. Reasoning that virus-host cell interactions would result in perturbations of cell cycle kinetics, measurement of the duration of the phases of the cell cycle in normal T lymphocytes infected with human immunodeficiency virus (HIV) was undertaken.</p><p><strong>Methods: </strong>Flow cytometric measurement of bromodeoxyuridine-labeled and DNA content-stained cells at multiple points through the cell cycle allowed estimation of the fraction of cells in each phase, the potential doubling-time, and the durations of S and G(2)/M phases. Separate analysis of the HIV(+) and HIV(-) populations within the infected cultures was performed based on intracellular, anti-HIV core p24 antibody labeling. A novel mathematical model, which accounted for cell loss, was developed to estimate cell cycle phases.</p><p><strong>Results: </strong>(a) S phase was prolonged in the HIV-1(SF2)-infected cells compared with control. (b) This delay in S phase was due to delay in the population of cells not expressing HIV-1 antigens (p24 negative). (c) Accumulation of cells in G(2)/M phase was confirmed in HIV-1-infected cultures and was proportional to the level of infection as measured by p24 fluorescent intensity. However, all mock and HIV-1-infected populations predicted to proceed through cell division demonstrated similar G(2)/M-phase durations. (c) Potential doubling times were longer in the infected cultures; in contrast, the p24(+) subpopulations accounted for this delay. This suggests an isolated delay in the G(0)/G(1) phase for that population of cells.</p><p><strong>Conclusions: </strong>Multiple phases of host cell cycle durations were affected by HIV-1(SF2) infection in this in vitro model, suggesting novel HIV-1 pathogenesis mechanisms. Prolonged S-phase durations in HIV-1 infected/p24(-) and G(0)/G(1)-phase durations in HIV-1 infected/p24(+) subpopulations require further study to identify mechanistic pathways.</p>","PeriodicalId":520601,"journal":{"name":"Cytometry. Part A : the journal of the International Society for Analytical Cytology","volume":" ","pages":"41-51"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cyto.a.20148","citationCount":"4","resultStr":"{\"title\":\"Cell cycle kinetic dysregulation in HIV-infected normal lymphocytes.\",\"authors\":\"David M Asmuth, Nan Wang, Ying Lu, Xiao-Dong Li, Lisa Reece, Nicholas H A Terry, Richard B Pollard, Mostafa Nokta, James F Leary, R Allen White\",\"doi\":\"10.1002/cyto.a.20148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Viruses alter cellular gene transcription and protein binding at many steps critical for cell cycle regulation to optimize the milieu for productive infection. Reasoning that virus-host cell interactions would result in perturbations of cell cycle kinetics, measurement of the duration of the phases of the cell cycle in normal T lymphocytes infected with human immunodeficiency virus (HIV) was undertaken.</p><p><strong>Methods: </strong>Flow cytometric measurement of bromodeoxyuridine-labeled and DNA content-stained cells at multiple points through the cell cycle allowed estimation of the fraction of cells in each phase, the potential doubling-time, and the durations of S and G(2)/M phases. Separate analysis of the HIV(+) and HIV(-) populations within the infected cultures was performed based on intracellular, anti-HIV core p24 antibody labeling. A novel mathematical model, which accounted for cell loss, was developed to estimate cell cycle phases.</p><p><strong>Results: </strong>(a) S phase was prolonged in the HIV-1(SF2)-infected cells compared with control. (b) This delay in S phase was due to delay in the population of cells not expressing HIV-1 antigens (p24 negative). (c) Accumulation of cells in G(2)/M phase was confirmed in HIV-1-infected cultures and was proportional to the level of infection as measured by p24 fluorescent intensity. However, all mock and HIV-1-infected populations predicted to proceed through cell division demonstrated similar G(2)/M-phase durations. (c) Potential doubling times were longer in the infected cultures; in contrast, the p24(+) subpopulations accounted for this delay. This suggests an isolated delay in the G(0)/G(1) phase for that population of cells.</p><p><strong>Conclusions: </strong>Multiple phases of host cell cycle durations were affected by HIV-1(SF2) infection in this in vitro model, suggesting novel HIV-1 pathogenesis mechanisms. Prolonged S-phase durations in HIV-1 infected/p24(-) and G(0)/G(1)-phase durations in HIV-1 infected/p24(+) subpopulations require further study to identify mechanistic pathways.</p>\",\"PeriodicalId\":520601,\"journal\":{\"name\":\"Cytometry. Part A : the journal of the International Society for Analytical Cytology\",\"volume\":\" \",\"pages\":\"41-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cyto.a.20148\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry. Part A : the journal of the International Society for Analytical Cytology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cyto.a.20148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry. Part A : the journal of the International Society for Analytical Cytology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.20148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cell cycle kinetic dysregulation in HIV-infected normal lymphocytes.
Background: Viruses alter cellular gene transcription and protein binding at many steps critical for cell cycle regulation to optimize the milieu for productive infection. Reasoning that virus-host cell interactions would result in perturbations of cell cycle kinetics, measurement of the duration of the phases of the cell cycle in normal T lymphocytes infected with human immunodeficiency virus (HIV) was undertaken.
Methods: Flow cytometric measurement of bromodeoxyuridine-labeled and DNA content-stained cells at multiple points through the cell cycle allowed estimation of the fraction of cells in each phase, the potential doubling-time, and the durations of S and G(2)/M phases. Separate analysis of the HIV(+) and HIV(-) populations within the infected cultures was performed based on intracellular, anti-HIV core p24 antibody labeling. A novel mathematical model, which accounted for cell loss, was developed to estimate cell cycle phases.
Results: (a) S phase was prolonged in the HIV-1(SF2)-infected cells compared with control. (b) This delay in S phase was due to delay in the population of cells not expressing HIV-1 antigens (p24 negative). (c) Accumulation of cells in G(2)/M phase was confirmed in HIV-1-infected cultures and was proportional to the level of infection as measured by p24 fluorescent intensity. However, all mock and HIV-1-infected populations predicted to proceed through cell division demonstrated similar G(2)/M-phase durations. (c) Potential doubling times were longer in the infected cultures; in contrast, the p24(+) subpopulations accounted for this delay. This suggests an isolated delay in the G(0)/G(1) phase for that population of cells.
Conclusions: Multiple phases of host cell cycle durations were affected by HIV-1(SF2) infection in this in vitro model, suggesting novel HIV-1 pathogenesis mechanisms. Prolonged S-phase durations in HIV-1 infected/p24(-) and G(0)/G(1)-phase durations in HIV-1 infected/p24(+) subpopulations require further study to identify mechanistic pathways.