Oliver Ebert, Dorothee Wilbert, Peter Buttgereit, Carsten Ziske, Dimitri Flieger, Ingo Gh Schmidt-Wolf
{"title":"重组腺病毒介导的人B淋巴瘤细胞IL-2和IL-12表达对共培养PBMC的影响","authors":"Oliver Ebert, Dorothee Wilbert, Peter Buttgereit, Carsten Ziske, Dimitri Flieger, Ingo Gh Schmidt-Wolf","doi":"10.1186/1479-0556-2-15","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND: Modulation of the immune system by genetically modified lymphoma cell vaccines is of potential therapeutic value in the treatment of B cell lymphoma. However, the anti-tumor effect of any single immunogene transfer has so far been limited. Combination treatment of recombinant IL-2 and IL-12 has been reported to be synergistic for inducing anti-tumor responses in solid tumors but the potential of IL-2/IL-12 gene modified B cell lymphoma cells has not been explored yet. METHODS: Using three different human B cell lymphoma cell lines and primary samples from patients with B cell neoplasms, expression levels of the coxsackie B-adenovirus receptor (CAR) and alpha (v) integrins were analyzed by fluorescence-activated cell sorter (FACS). Adenoviral transduction efficiencies were determined by GFP expression analysis and IL-2 and IL-12 cytokine production was quantified by enzyme-linked immunosorbent (ELISA) assays. Proliferative activities of peripheral blood mononuclear cells (PBMC) stimulated with either cytokine derived from supernatants of transduced lymphoma cells were measured by cell proliferation (MTT) assays. An EuTDA cytotoxicity assay was used to compare cytotoxic activities of IL-2 and/or IL-12 stimulated PBMC against unmodified lymphoma cells. RESULTS: We found that B cell lymphoma cell lines could be transduced with much higher efficiency than primary tumor samples, which appeared to correlate with the expression of CAR. Adenoviral-expressed IL-2 and IL-12 similarly led to dose-dependent increases in proliferation rates of PBMC obtained from healthy donors. IL-2 and/or IL-12 transduced lymphoma cells were co-cultured with PBMC, which were assayed for their cytolytic activity against unmodified lymphoma cells. We found that IL-2 stimulated PBMC elicited a significant anti-tumor effect but not the combined effect of IL-2/IL-12 or IL-12 alone. CONCLUSION: This study demonstrates that the generation of recombinant adenovirus modified lymphoma cell vaccines based on lymphoma cell lines expressing IL-2 and IL-12 cytokine genes is technically feasible, induces increases in proliferation rates and cytotoxic activity of co-cultured PBMC, and warrants further development for the treatment of lymphoma patients in the future.</p>","PeriodicalId":12596,"journal":{"name":"Genetic Vaccines and Therapy","volume":" ","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1479-0556-2-15","citationCount":"3","resultStr":"{\"title\":\"Effects of recombinant adenovirus-mediated expression of IL-2 and IL-12 in human B lymphoma cells on co-cultured PBMC.\",\"authors\":\"Oliver Ebert, Dorothee Wilbert, Peter Buttgereit, Carsten Ziske, Dimitri Flieger, Ingo Gh Schmidt-Wolf\",\"doi\":\"10.1186/1479-0556-2-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BACKGROUND: Modulation of the immune system by genetically modified lymphoma cell vaccines is of potential therapeutic value in the treatment of B cell lymphoma. However, the anti-tumor effect of any single immunogene transfer has so far been limited. Combination treatment of recombinant IL-2 and IL-12 has been reported to be synergistic for inducing anti-tumor responses in solid tumors but the potential of IL-2/IL-12 gene modified B cell lymphoma cells has not been explored yet. METHODS: Using three different human B cell lymphoma cell lines and primary samples from patients with B cell neoplasms, expression levels of the coxsackie B-adenovirus receptor (CAR) and alpha (v) integrins were analyzed by fluorescence-activated cell sorter (FACS). Adenoviral transduction efficiencies were determined by GFP expression analysis and IL-2 and IL-12 cytokine production was quantified by enzyme-linked immunosorbent (ELISA) assays. Proliferative activities of peripheral blood mononuclear cells (PBMC) stimulated with either cytokine derived from supernatants of transduced lymphoma cells were measured by cell proliferation (MTT) assays. An EuTDA cytotoxicity assay was used to compare cytotoxic activities of IL-2 and/or IL-12 stimulated PBMC against unmodified lymphoma cells. RESULTS: We found that B cell lymphoma cell lines could be transduced with much higher efficiency than primary tumor samples, which appeared to correlate with the expression of CAR. Adenoviral-expressed IL-2 and IL-12 similarly led to dose-dependent increases in proliferation rates of PBMC obtained from healthy donors. IL-2 and/or IL-12 transduced lymphoma cells were co-cultured with PBMC, which were assayed for their cytolytic activity against unmodified lymphoma cells. We found that IL-2 stimulated PBMC elicited a significant anti-tumor effect but not the combined effect of IL-2/IL-12 or IL-12 alone. CONCLUSION: This study demonstrates that the generation of recombinant adenovirus modified lymphoma cell vaccines based on lymphoma cell lines expressing IL-2 and IL-12 cytokine genes is technically feasible, induces increases in proliferation rates and cytotoxic activity of co-cultured PBMC, and warrants further development for the treatment of lymphoma patients in the future.</p>\",\"PeriodicalId\":12596,\"journal\":{\"name\":\"Genetic Vaccines and Therapy\",\"volume\":\" \",\"pages\":\"15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1479-0556-2-15\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Vaccines and Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/1479-0556-2-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Vaccines and Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1479-0556-2-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of recombinant adenovirus-mediated expression of IL-2 and IL-12 in human B lymphoma cells on co-cultured PBMC.
BACKGROUND: Modulation of the immune system by genetically modified lymphoma cell vaccines is of potential therapeutic value in the treatment of B cell lymphoma. However, the anti-tumor effect of any single immunogene transfer has so far been limited. Combination treatment of recombinant IL-2 and IL-12 has been reported to be synergistic for inducing anti-tumor responses in solid tumors but the potential of IL-2/IL-12 gene modified B cell lymphoma cells has not been explored yet. METHODS: Using three different human B cell lymphoma cell lines and primary samples from patients with B cell neoplasms, expression levels of the coxsackie B-adenovirus receptor (CAR) and alpha (v) integrins were analyzed by fluorescence-activated cell sorter (FACS). Adenoviral transduction efficiencies were determined by GFP expression analysis and IL-2 and IL-12 cytokine production was quantified by enzyme-linked immunosorbent (ELISA) assays. Proliferative activities of peripheral blood mononuclear cells (PBMC) stimulated with either cytokine derived from supernatants of transduced lymphoma cells were measured by cell proliferation (MTT) assays. An EuTDA cytotoxicity assay was used to compare cytotoxic activities of IL-2 and/or IL-12 stimulated PBMC against unmodified lymphoma cells. RESULTS: We found that B cell lymphoma cell lines could be transduced with much higher efficiency than primary tumor samples, which appeared to correlate with the expression of CAR. Adenoviral-expressed IL-2 and IL-12 similarly led to dose-dependent increases in proliferation rates of PBMC obtained from healthy donors. IL-2 and/or IL-12 transduced lymphoma cells were co-cultured with PBMC, which were assayed for their cytolytic activity against unmodified lymphoma cells. We found that IL-2 stimulated PBMC elicited a significant anti-tumor effect but not the combined effect of IL-2/IL-12 or IL-12 alone. CONCLUSION: This study demonstrates that the generation of recombinant adenovirus modified lymphoma cell vaccines based on lymphoma cell lines expressing IL-2 and IL-12 cytokine genes is technically feasible, induces increases in proliferation rates and cytotoxic activity of co-cultured PBMC, and warrants further development for the treatment of lymphoma patients in the future.