{"title":"植物阳离子运输的分子生物学。","authors":"Tama Christine Fox, Mary Lou Guerinot","doi":"10.1146/annurev.arplant.49.1.669","DOIUrl":null,"url":null,"abstract":"<p><p>This review summarizes current knowledge about genes whose products function in the transport of various cationic macronutrients (K, Ca) and micronutrients (Cu, Fe, Mn, and Zn) in plants. Such genes have been identified on the basis of function, via complementation of yeast mutants, or on the basis of sequence similarity, via database analysis, degenerate PCR, or low stringency hybridization. Not surprisingly, many of these genes belong to previously described transporter families, including those encoding Shaker-type K+ channels, P-type ATPases, and Nramp proteins. ZIP, a novel cation transporter family first identified in plants, also seems to be ubiquitous; members of this family are found in protozoa, yeast, nematodes, and humans. Emerging information on where in the plant each transporter functions and how each is controlled in response to nutrient availability may allow creation of food crops with enhanced mineral content as well as crops that bioaccumulate or exclude toxic metals.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"49 ","pages":"669-696"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.669","citationCount":"370","resultStr":"{\"title\":\"MOLECULAR BIOLOGY OF CATION TRANSPORT IN PLANTS.\",\"authors\":\"Tama Christine Fox, Mary Lou Guerinot\",\"doi\":\"10.1146/annurev.arplant.49.1.669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review summarizes current knowledge about genes whose products function in the transport of various cationic macronutrients (K, Ca) and micronutrients (Cu, Fe, Mn, and Zn) in plants. Such genes have been identified on the basis of function, via complementation of yeast mutants, or on the basis of sequence similarity, via database analysis, degenerate PCR, or low stringency hybridization. Not surprisingly, many of these genes belong to previously described transporter families, including those encoding Shaker-type K+ channels, P-type ATPases, and Nramp proteins. ZIP, a novel cation transporter family first identified in plants, also seems to be ubiquitous; members of this family are found in protozoa, yeast, nematodes, and humans. Emerging information on where in the plant each transporter functions and how each is controlled in response to nutrient availability may allow creation of food crops with enhanced mineral content as well as crops that bioaccumulate or exclude toxic metals.</p>\",\"PeriodicalId\":80493,\"journal\":{\"name\":\"Annual review of plant physiology and plant molecular biology\",\"volume\":\"49 \",\"pages\":\"669-696\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.669\",\"citationCount\":\"370\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant physiology and plant molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.arplant.49.1.669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.49.1.669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This review summarizes current knowledge about genes whose products function in the transport of various cationic macronutrients (K, Ca) and micronutrients (Cu, Fe, Mn, and Zn) in plants. Such genes have been identified on the basis of function, via complementation of yeast mutants, or on the basis of sequence similarity, via database analysis, degenerate PCR, or low stringency hybridization. Not surprisingly, many of these genes belong to previously described transporter families, including those encoding Shaker-type K+ channels, P-type ATPases, and Nramp proteins. ZIP, a novel cation transporter family first identified in plants, also seems to be ubiquitous; members of this family are found in protozoa, yeast, nematodes, and humans. Emerging information on where in the plant each transporter functions and how each is controlled in response to nutrient availability may allow creation of food crops with enhanced mineral content as well as crops that bioaccumulate or exclude toxic metals.