{"title":"光合金属蛋白的翻译后组装。","authors":"Sabeeha Merchant, Beth Welty Dreyfuss","doi":"10.1146/annurev.arplant.49.1.25","DOIUrl":null,"url":null,"abstract":"<p><p>The assembly of chloroplast metalloproteins requires biochemical catalysis. Assembly factors involved in the biosynthesis of metalloproteins might be required to synthesize, chaperone, or transport the cofactor; modify or chaperone the apoprotein; or catalyze cofactor-protein association. Genetic and biochemical approaches have been applied to the study of the assembly of chloroplast iron-sulfur centers, cytochromes, plastocyanin, and the manganese center of photosystem II. These have led to the discovery of NifS-homologues and cysteine desulfhydrase for iron-sulfur center assembly, six loci (CCS1-CCS5, ccsA) for c-type cytochrome assembly, four loci for cytochrome b6 assembly (CCB1-CCB4), the CtpA protease, which is involved in pre-D1 processing, and the PCY2 locus, which is involved in holoplastocyanin accumulation. New assembly factors are likely to be discovered via the study of assembly-defective mutants of Arabidopsis, cyanobacteria, Chlamydomonas, maize, and via the functional analysis of candidate cofactor metabolizing components identified in the genome databases.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"49 ","pages":"25-51"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.25","citationCount":"85","resultStr":"{\"title\":\"POSTTRANSLATIONAL ASSEMBLY OF PHOTOSYNTHETIC METALLOPROTEINS.\",\"authors\":\"Sabeeha Merchant, Beth Welty Dreyfuss\",\"doi\":\"10.1146/annurev.arplant.49.1.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The assembly of chloroplast metalloproteins requires biochemical catalysis. Assembly factors involved in the biosynthesis of metalloproteins might be required to synthesize, chaperone, or transport the cofactor; modify or chaperone the apoprotein; or catalyze cofactor-protein association. Genetic and biochemical approaches have been applied to the study of the assembly of chloroplast iron-sulfur centers, cytochromes, plastocyanin, and the manganese center of photosystem II. These have led to the discovery of NifS-homologues and cysteine desulfhydrase for iron-sulfur center assembly, six loci (CCS1-CCS5, ccsA) for c-type cytochrome assembly, four loci for cytochrome b6 assembly (CCB1-CCB4), the CtpA protease, which is involved in pre-D1 processing, and the PCY2 locus, which is involved in holoplastocyanin accumulation. New assembly factors are likely to be discovered via the study of assembly-defective mutants of Arabidopsis, cyanobacteria, Chlamydomonas, maize, and via the functional analysis of candidate cofactor metabolizing components identified in the genome databases.</p>\",\"PeriodicalId\":80493,\"journal\":{\"name\":\"Annual review of plant physiology and plant molecular biology\",\"volume\":\"49 \",\"pages\":\"25-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.25\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant physiology and plant molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev.arplant.49.1.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.49.1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
POSTTRANSLATIONAL ASSEMBLY OF PHOTOSYNTHETIC METALLOPROTEINS.
The assembly of chloroplast metalloproteins requires biochemical catalysis. Assembly factors involved in the biosynthesis of metalloproteins might be required to synthesize, chaperone, or transport the cofactor; modify or chaperone the apoprotein; or catalyze cofactor-protein association. Genetic and biochemical approaches have been applied to the study of the assembly of chloroplast iron-sulfur centers, cytochromes, plastocyanin, and the manganese center of photosystem II. These have led to the discovery of NifS-homologues and cysteine desulfhydrase for iron-sulfur center assembly, six loci (CCS1-CCS5, ccsA) for c-type cytochrome assembly, four loci for cytochrome b6 assembly (CCB1-CCB4), the CtpA protease, which is involved in pre-D1 processing, and the PCY2 locus, which is involved in holoplastocyanin accumulation. New assembly factors are likely to be discovered via the study of assembly-defective mutants of Arabidopsis, cyanobacteria, Chlamydomonas, maize, and via the functional analysis of candidate cofactor metabolizing components identified in the genome databases.