{"title":"GAC去除农药(甲胺磷):一个案例研究。","authors":"G Banerjee, B Kumar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pesticides are persistent pollutants which need utmost attention in agricultural pollution. They usually accumulate in the food chain, and hence are hazardous in nature. The present study reports the performance of granular activated carbon (GAC) in the removal of acephate contained in the effluent of a nearby pesticide manufacturing industry. In the batch study, the optimum dose of GAC was found to be 85 gm/litre for almost 100% removal of acephate from its initial concentration of 2.9 mg/litre which was found in the industrial effluent under treatment. The adsorption kinetics were represented closely by Langmuir isotherm. The equilibrium time was found as 80 minutes. The adsorptive capacity of GAC for acephate (pesticide) was of the order of 0.04614 mg/gm. A column system was devised and designed based on bed depth-service time (BDST) approach with the experimental value of 'a' and 'b' as 6.125 and 47.75 respectively.</p>","PeriodicalId":84892,"journal":{"name":"Indian journal of environmental health","volume":"44 2","pages":"92-101"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pesticide (acephate) removal by GAC: a case study.\",\"authors\":\"G Banerjee, B Kumar\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pesticides are persistent pollutants which need utmost attention in agricultural pollution. They usually accumulate in the food chain, and hence are hazardous in nature. The present study reports the performance of granular activated carbon (GAC) in the removal of acephate contained in the effluent of a nearby pesticide manufacturing industry. In the batch study, the optimum dose of GAC was found to be 85 gm/litre for almost 100% removal of acephate from its initial concentration of 2.9 mg/litre which was found in the industrial effluent under treatment. The adsorption kinetics were represented closely by Langmuir isotherm. The equilibrium time was found as 80 minutes. The adsorptive capacity of GAC for acephate (pesticide) was of the order of 0.04614 mg/gm. A column system was devised and designed based on bed depth-service time (BDST) approach with the experimental value of 'a' and 'b' as 6.125 and 47.75 respectively.</p>\",\"PeriodicalId\":84892,\"journal\":{\"name\":\"Indian journal of environmental health\",\"volume\":\"44 2\",\"pages\":\"92-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian journal of environmental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of environmental health","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pesticide (acephate) removal by GAC: a case study.
Pesticides are persistent pollutants which need utmost attention in agricultural pollution. They usually accumulate in the food chain, and hence are hazardous in nature. The present study reports the performance of granular activated carbon (GAC) in the removal of acephate contained in the effluent of a nearby pesticide manufacturing industry. In the batch study, the optimum dose of GAC was found to be 85 gm/litre for almost 100% removal of acephate from its initial concentration of 2.9 mg/litre which was found in the industrial effluent under treatment. The adsorption kinetics were represented closely by Langmuir isotherm. The equilibrium time was found as 80 minutes. The adsorptive capacity of GAC for acephate (pesticide) was of the order of 0.04614 mg/gm. A column system was devised and designed based on bed depth-service time (BDST) approach with the experimental value of 'a' and 'b' as 6.125 and 47.75 respectively.