Xiaotong Qi, Yanhua Wang, Caixia Liu, Qingling Liu
{"title":"柴油车SCR系统cu基沸石催化剂的挑战与综合发展综述","authors":"Xiaotong Qi, Yanhua Wang, Caixia Liu, Qingling Liu","doi":"10.1007/s10563-022-09384-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen oxides (NO<sub>x</sub>) are major contaminant causing environmental pollution in atmosphere. The most effective method for NO<sub>x</sub> removal is ammonia selective catalytic reduction (NH<sub>3</sub>-SCR), and catalysts play a crucial role. Cu-based zeolite catalysts are commonly used for the removal of NO<sub>x</sub> from diesel engine exhaust, but the complex composition of diesel exhaust and the harsh operating environment of catalysts make zeolite catalysts susceptible to deactivation, thus limiting their practical application. This manuscript focuses on the negative effects of actual working conditions associated with diesel vehicle exhausts and analyses the influence of composition structure that Cu-based zeolite catalysts have on NH<sub>3</sub>-SCR reaction, which refers mainly to the effects brought by topology, Si/Al ratio and Cu species. The strategies for developing Cu-based zeolite catalysts are summarized, and the current development bottlenecks such as improving catalytic performance, reducing synthesis cost and enhancing production efficiency are discussed, and the future research directions of Cu-based zeolite are prospected.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 3","pages":"181 - 206"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review\",\"authors\":\"Xiaotong Qi, Yanhua Wang, Caixia Liu, Qingling Liu\",\"doi\":\"10.1007/s10563-022-09384-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen oxides (NO<sub>x</sub>) are major contaminant causing environmental pollution in atmosphere. The most effective method for NO<sub>x</sub> removal is ammonia selective catalytic reduction (NH<sub>3</sub>-SCR), and catalysts play a crucial role. Cu-based zeolite catalysts are commonly used for the removal of NO<sub>x</sub> from diesel engine exhaust, but the complex composition of diesel exhaust and the harsh operating environment of catalysts make zeolite catalysts susceptible to deactivation, thus limiting their practical application. This manuscript focuses on the negative effects of actual working conditions associated with diesel vehicle exhausts and analyses the influence of composition structure that Cu-based zeolite catalysts have on NH<sub>3</sub>-SCR reaction, which refers mainly to the effects brought by topology, Si/Al ratio and Cu species. The strategies for developing Cu-based zeolite catalysts are summarized, and the current development bottlenecks such as improving catalytic performance, reducing synthesis cost and enhancing production efficiency are discussed, and the future research directions of Cu-based zeolite are prospected.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"27 3\",\"pages\":\"181 - 206\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-022-09384-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09384-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review
Nitrogen oxides (NOx) are major contaminant causing environmental pollution in atmosphere. The most effective method for NOx removal is ammonia selective catalytic reduction (NH3-SCR), and catalysts play a crucial role. Cu-based zeolite catalysts are commonly used for the removal of NOx from diesel engine exhaust, but the complex composition of diesel exhaust and the harsh operating environment of catalysts make zeolite catalysts susceptible to deactivation, thus limiting their practical application. This manuscript focuses on the negative effects of actual working conditions associated with diesel vehicle exhausts and analyses the influence of composition structure that Cu-based zeolite catalysts have on NH3-SCR reaction, which refers mainly to the effects brought by topology, Si/Al ratio and Cu species. The strategies for developing Cu-based zeolite catalysts are summarized, and the current development bottlenecks such as improving catalytic performance, reducing synthesis cost and enhancing production efficiency are discussed, and the future research directions of Cu-based zeolite are prospected.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.