{"title":"β -地中海贫血重症患者过氧化氢酶、谷胱甘肽过氧化物酶、谷胱甘肽s -转移酶和髓过氧化物酶基因多态性状况评估氧化损伤及其与酶活性的关系","authors":"Poonam Tripathi, Sarita Agarwal, Satyendra Tewari, Kausik Mandal","doi":"10.1055/s-0041-1723961","DOIUrl":null,"url":null,"abstract":"<p><p>Beta-thalassemic patients require regular blood transfusion to sustain their life which leads to iron overload and causes oxidative stress. The aim of this study was to investigate the status of variants in genes including <i>GSTM1</i> , <i>GSTT1</i> (null/present), CT-262 (C > T) and CT-89 (A > T), glutathione peroxidase (GPx), and myeloperoxidase (MPO). The genotype studies were conducted with 200 thalassemia major (TM) patients and 200 healthy controls. Genotyping of GST gene was performed by multiplex polymerase chain reaction (PCR), whereas for CT, GPx and MPO genesvariants PCR- restriction fragment length polymorphism technique used. However, the enzyme activities were measured only in the patients group to assess the association with the genotypes. All enzyme estimations were performed by ELISA. We observed higher frequency of GSTT1 null, CT-89 (A > T), GPx1 198 (C > T) and MPO-463 (G > A) polymorphisms in TM patient than healthy controls. However, CT-262 (C > T) polymorphism was not found to be statistically significantly different between patients and controls. Our results suggest that frequency of null allele of glutathione-S-transferase is significantly high among TM patients. The other alleles CT-89 (A > T), GPx1 198 (C > T), and MPO-463 (G > A) are linked to decreased CT, GPX, and MPO enzyme activities.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"11 3","pages":"198-212"},"PeriodicalIF":0.4000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385263/pdf/10-1055-s-0041-1723961.pdf","citationCount":"1","resultStr":"{\"title\":\"Status of Catalase, Glutathione Peroxidase, Glutathione S-Transferase, and Myeloperoxidase Gene Polymorphisms in Beta-Thalassemia Major Patients to Assess Oxidative Injury and Its Association with Enzyme Activities.\",\"authors\":\"Poonam Tripathi, Sarita Agarwal, Satyendra Tewari, Kausik Mandal\",\"doi\":\"10.1055/s-0041-1723961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beta-thalassemic patients require regular blood transfusion to sustain their life which leads to iron overload and causes oxidative stress. The aim of this study was to investigate the status of variants in genes including <i>GSTM1</i> , <i>GSTT1</i> (null/present), CT-262 (C > T) and CT-89 (A > T), glutathione peroxidase (GPx), and myeloperoxidase (MPO). The genotype studies were conducted with 200 thalassemia major (TM) patients and 200 healthy controls. Genotyping of GST gene was performed by multiplex polymerase chain reaction (PCR), whereas for CT, GPx and MPO genesvariants PCR- restriction fragment length polymorphism technique used. However, the enzyme activities were measured only in the patients group to assess the association with the genotypes. All enzyme estimations were performed by ELISA. We observed higher frequency of GSTT1 null, CT-89 (A > T), GPx1 198 (C > T) and MPO-463 (G > A) polymorphisms in TM patient than healthy controls. However, CT-262 (C > T) polymorphism was not found to be statistically significantly different between patients and controls. Our results suggest that frequency of null allele of glutathione-S-transferase is significantly high among TM patients. The other alleles CT-89 (A > T), GPx1 198 (C > T), and MPO-463 (G > A) are linked to decreased CT, GPX, and MPO enzyme activities.</p>\",\"PeriodicalId\":16695,\"journal\":{\"name\":\"Journal of pediatric genetics\",\"volume\":\"11 3\",\"pages\":\"198-212\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385263/pdf/10-1055-s-0041-1723961.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pediatric genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0041-1723961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pediatric genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1723961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"PEDIATRICS","Score":null,"Total":0}
Status of Catalase, Glutathione Peroxidase, Glutathione S-Transferase, and Myeloperoxidase Gene Polymorphisms in Beta-Thalassemia Major Patients to Assess Oxidative Injury and Its Association with Enzyme Activities.
Beta-thalassemic patients require regular blood transfusion to sustain their life which leads to iron overload and causes oxidative stress. The aim of this study was to investigate the status of variants in genes including GSTM1 , GSTT1 (null/present), CT-262 (C > T) and CT-89 (A > T), glutathione peroxidase (GPx), and myeloperoxidase (MPO). The genotype studies were conducted with 200 thalassemia major (TM) patients and 200 healthy controls. Genotyping of GST gene was performed by multiplex polymerase chain reaction (PCR), whereas for CT, GPx and MPO genesvariants PCR- restriction fragment length polymorphism technique used. However, the enzyme activities were measured only in the patients group to assess the association with the genotypes. All enzyme estimations were performed by ELISA. We observed higher frequency of GSTT1 null, CT-89 (A > T), GPx1 198 (C > T) and MPO-463 (G > A) polymorphisms in TM patient than healthy controls. However, CT-262 (C > T) polymorphism was not found to be statistically significantly different between patients and controls. Our results suggest that frequency of null allele of glutathione-S-transferase is significantly high among TM patients. The other alleles CT-89 (A > T), GPx1 198 (C > T), and MPO-463 (G > A) are linked to decreased CT, GPX, and MPO enzyme activities.
期刊介绍:
The Journal of Pediatric Genetics is an English multidisciplinary peer-reviewed international journal publishing articles on all aspects of genetics in childhood and of the genetics of experimental models. These topics include clinical genetics, molecular genetics, biochemical genetics, medical genetics, dysmorphology, teratology, genetic counselling, genetic engineering, formal genetics, neuropsychiatric genetics, behavioral genetics, community genetics, cytogenetics, hereditary or syndromic cancer genetics, genetic mapping, reproductive genetics, fetal pathology and prenatal diagnosis, multiple congenital anomaly syndromes, and molecular embryology of birth defects. Journal of Pediatric Genetics provides an in-depth update on new subjects and current comprehensive coverage of the latest techniques used in the diagnosis of childhood genetics. Journal of Pediatric Genetics encourages submissions from all authors throughout the world. The following articles will be considered for publication: editorials, original and review articles, short report, rapid communications, case reports, letters to the editor, and book reviews. The aim of the journal is to share and disseminate knowledge between all disciplines in the field of pediatric genetics. This journal is a publication of the World Pediatric Society: http://www.worldpediatricsociety.org/ The Journal of Pediatric Genetics is available in print and online. Articles published ahead of print are available via the eFirst service on the Thieme E-Journals platform.