{"title":"非侵入性光学技术在皮肤癌诊断中的发展及临床应用。","authors":"Hamza Abu Owida","doi":"10.1155/2022/9218847","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer has shown a sharp increase in prevalence over the past few decades and currently accounts for one-third of all cancers diagnosed. The most lethal form of skin cancer is melanoma, which develops in 4% of individuals. The rising prevalence and increased number of fatalities of skin cancer put a significant burden on healthcare resources and the economy. However, early detection and treatment greatly improve survival rates for patients with skin cancer. Since the rising rates of both the incidence and mortality have been particularly noticeable with melanoma, significant resources have been allocated to research aimed at earlier diagnosis and a deeper knowledge of the disease. Dermoscopy, reflectance confocal microscopy, optical coherence tomography, multiphoton-excited fluorescence imaging, and dermatofluorescence are only a few of the optical modalities reviewed here that have been employed to enhance noninvasive diagnosis of skin cancer in recent years. This review article discusses the methodology behind newly emerging noninvasive optical diagnostic technologies, their clinical applications, and advantages and disadvantages of these techniques, as well as the potential for their further advancement in the future.</p>","PeriodicalId":17172,"journal":{"name":"Journal of Skin Cancer","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699785/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developments and Clinical Applications of Noninvasive Optical Technologies for Skin Cancer Diagnosis.\",\"authors\":\"Hamza Abu Owida\",\"doi\":\"10.1155/2022/9218847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin cancer has shown a sharp increase in prevalence over the past few decades and currently accounts for one-third of all cancers diagnosed. The most lethal form of skin cancer is melanoma, which develops in 4% of individuals. The rising prevalence and increased number of fatalities of skin cancer put a significant burden on healthcare resources and the economy. However, early detection and treatment greatly improve survival rates for patients with skin cancer. Since the rising rates of both the incidence and mortality have been particularly noticeable with melanoma, significant resources have been allocated to research aimed at earlier diagnosis and a deeper knowledge of the disease. Dermoscopy, reflectance confocal microscopy, optical coherence tomography, multiphoton-excited fluorescence imaging, and dermatofluorescence are only a few of the optical modalities reviewed here that have been employed to enhance noninvasive diagnosis of skin cancer in recent years. This review article discusses the methodology behind newly emerging noninvasive optical diagnostic technologies, their clinical applications, and advantages and disadvantages of these techniques, as well as the potential for their further advancement in the future.</p>\",\"PeriodicalId\":17172,\"journal\":{\"name\":\"Journal of Skin Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699785/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Skin Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9218847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Skin Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9218847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Developments and Clinical Applications of Noninvasive Optical Technologies for Skin Cancer Diagnosis.
Skin cancer has shown a sharp increase in prevalence over the past few decades and currently accounts for one-third of all cancers diagnosed. The most lethal form of skin cancer is melanoma, which develops in 4% of individuals. The rising prevalence and increased number of fatalities of skin cancer put a significant burden on healthcare resources and the economy. However, early detection and treatment greatly improve survival rates for patients with skin cancer. Since the rising rates of both the incidence and mortality have been particularly noticeable with melanoma, significant resources have been allocated to research aimed at earlier diagnosis and a deeper knowledge of the disease. Dermoscopy, reflectance confocal microscopy, optical coherence tomography, multiphoton-excited fluorescence imaging, and dermatofluorescence are only a few of the optical modalities reviewed here that have been employed to enhance noninvasive diagnosis of skin cancer in recent years. This review article discusses the methodology behind newly emerging noninvasive optical diagnostic technologies, their clinical applications, and advantages and disadvantages of these techniques, as well as the potential for their further advancement in the future.
期刊介绍:
Journal of Skin Cancer is a peer-reviewed, Open Access journal that publishes clinical and translational research on the detection, diagnosis, prevention, and treatment of skin malignancies. The journal encourages the submission of original research articles, review articles, and clinical studies related to pathology, prognostic indicators and biomarkers, novel therapies, as well as drug sensitivity and resistance.