{"title":"基于贝叶斯分类器模型和计算机辅助高通量虚拟筛选的新型花生四烯酸15-脂氧合酶抑制剂鉴定。","authors":"Yinglin Liao, Peng Cao, Lianxiang Luo","doi":"10.3390/ph15111440","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent lipid peroxidative form of cell death that is distinct from apoptosis and necrosis. ALOX15, also known as arachidonic acid 15-lipoxygenase, promotes ferroptosis by converting intracellular unsaturated lipids into oxidized lipid intermediates and is an important ferroptosis target. In this study, a naive Bayesian machine learning classifier with a structure-based, high-throughput screening approach and a molecular docking program were combined to screen for three compounds with excellent target-binding potential. In the absorption, distribution, metabolism, excretion, and toxicity characterization, three candidate molecules were predicted to exhibit drug-like properties. The subsequent molecular dynamics simulations confirmed their stable binding to the targets. The findings indicated that the compounds exhibited excellent potential ALOX15 inhibitor capacity, thereby providing novel candidates for the treatment of inflammatory ischemia-related diseases caused by ferroptosis.</p>","PeriodicalId":520747,"journal":{"name":"Pharmaceuticals (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695033/pdf/","citationCount":"3","resultStr":"{\"title\":\"Identification of Novel Arachidonic Acid 15-Lipoxygenase Inhibitors Based on the Bayesian Classifier Model and Computer-Aided High-Throughput Virtual Screening.\",\"authors\":\"Yinglin Liao, Peng Cao, Lianxiang Luo\",\"doi\":\"10.3390/ph15111440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is an iron-dependent lipid peroxidative form of cell death that is distinct from apoptosis and necrosis. ALOX15, also known as arachidonic acid 15-lipoxygenase, promotes ferroptosis by converting intracellular unsaturated lipids into oxidized lipid intermediates and is an important ferroptosis target. In this study, a naive Bayesian machine learning classifier with a structure-based, high-throughput screening approach and a molecular docking program were combined to screen for three compounds with excellent target-binding potential. In the absorption, distribution, metabolism, excretion, and toxicity characterization, three candidate molecules were predicted to exhibit drug-like properties. The subsequent molecular dynamics simulations confirmed their stable binding to the targets. The findings indicated that the compounds exhibited excellent potential ALOX15 inhibitor capacity, thereby providing novel candidates for the treatment of inflammatory ischemia-related diseases caused by ferroptosis.</p>\",\"PeriodicalId\":520747,\"journal\":{\"name\":\"Pharmaceuticals (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695033/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals (Basel, Switzerland)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph15111440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals (Basel, Switzerland)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph15111440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Novel Arachidonic Acid 15-Lipoxygenase Inhibitors Based on the Bayesian Classifier Model and Computer-Aided High-Throughput Virtual Screening.
Ferroptosis is an iron-dependent lipid peroxidative form of cell death that is distinct from apoptosis and necrosis. ALOX15, also known as arachidonic acid 15-lipoxygenase, promotes ferroptosis by converting intracellular unsaturated lipids into oxidized lipid intermediates and is an important ferroptosis target. In this study, a naive Bayesian machine learning classifier with a structure-based, high-throughput screening approach and a molecular docking program were combined to screen for three compounds with excellent target-binding potential. In the absorption, distribution, metabolism, excretion, and toxicity characterization, three candidate molecules were predicted to exhibit drug-like properties. The subsequent molecular dynamics simulations confirmed their stable binding to the targets. The findings indicated that the compounds exhibited excellent potential ALOX15 inhibitor capacity, thereby providing novel candidates for the treatment of inflammatory ischemia-related diseases caused by ferroptosis.