约束满足问题的快速并行分解。

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Constraints Pub Date : 2022-01-01 Epub Date: 2022-06-03 DOI:10.1007/s10601-022-09332-1
Georg Gottlob, Cem Okulmus, Reinhard Pichler
{"title":"约束满足问题的快速并行分解。","authors":"Georg Gottlob,&nbsp;Cem Okulmus,&nbsp;Reinhard Pichler","doi":"10.1007/s10601-022-09332-1","DOIUrl":null,"url":null,"abstract":"<p><p>Constraint Satisfaction Problems (CSP) are notoriously hard. Consequently, powerful decomposition methods have been developed to overcome this complexity. However, this poses the challenge of actually computing such a decomposition for a given CSP instance, and previous algorithms have shown their limitations in doing so. In this paper, we present a number of key algorithmic improvements and parallelisation techniques to compute so-called Generalized Hypertree Decompositions (GHDs) faster. We thus advance the ability to compute optimal (i.e., minimal-width) GHDs for a significantly wider range of CSP instances on modern machines. This lays the foundation for more systems and applications in evaluating CSPs and related problems (such as Conjunctive Query answering) based on their structural properties.</p>","PeriodicalId":55211,"journal":{"name":"Constraints","volume":"27 3","pages":"284-326"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360169/pdf/","citationCount":"9","resultStr":"{\"title\":\"Fast and parallel decomposition of constraint satisfaction problems.\",\"authors\":\"Georg Gottlob,&nbsp;Cem Okulmus,&nbsp;Reinhard Pichler\",\"doi\":\"10.1007/s10601-022-09332-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Constraint Satisfaction Problems (CSP) are notoriously hard. Consequently, powerful decomposition methods have been developed to overcome this complexity. However, this poses the challenge of actually computing such a decomposition for a given CSP instance, and previous algorithms have shown their limitations in doing so. In this paper, we present a number of key algorithmic improvements and parallelisation techniques to compute so-called Generalized Hypertree Decompositions (GHDs) faster. We thus advance the ability to compute optimal (i.e., minimal-width) GHDs for a significantly wider range of CSP instances on modern machines. This lays the foundation for more systems and applications in evaluating CSPs and related problems (such as Conjunctive Query answering) based on their structural properties.</p>\",\"PeriodicalId\":55211,\"journal\":{\"name\":\"Constraints\",\"volume\":\"27 3\",\"pages\":\"284-326\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360169/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constraints\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10601-022-09332-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constraints","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10601-022-09332-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

摘要

约束满足问题(CSP)是众所周知的困难问题。因此,已经开发出强大的分解方法来克服这种复杂性。然而,这对实际计算给定CSP实例的这种分解提出了挑战,并且以前的算法在这样做时已经显示出它们的局限性。在本文中,我们提出了一些关键的算法改进和并行化技术,以更快地计算所谓的广义超树分解(GHDs)。因此,我们提高了在现代机器上为更广泛的CSP实例计算最优(即最小宽度)ghd的能力。这为基于csp的结构属性来评估csp和相关问题(如连词查询应答)的更多系统和应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast and parallel decomposition of constraint satisfaction problems.

Fast and parallel decomposition of constraint satisfaction problems.

Fast and parallel decomposition of constraint satisfaction problems.

Fast and parallel decomposition of constraint satisfaction problems.

Constraint Satisfaction Problems (CSP) are notoriously hard. Consequently, powerful decomposition methods have been developed to overcome this complexity. However, this poses the challenge of actually computing such a decomposition for a given CSP instance, and previous algorithms have shown their limitations in doing so. In this paper, we present a number of key algorithmic improvements and parallelisation techniques to compute so-called Generalized Hypertree Decompositions (GHDs) faster. We thus advance the ability to compute optimal (i.e., minimal-width) GHDs for a significantly wider range of CSP instances on modern machines. This lays the foundation for more systems and applications in evaluating CSPs and related problems (such as Conjunctive Query answering) based on their structural properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Constraints
Constraints 工程技术-计算机:理论方法
CiteScore
2.20
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Constraints provides a common forum for the many disciplines interested in constraint programming and constraint satisfaction and optimization, and the many application domains in which constraint technology is employed. It covers all aspects of computing with constraints: theory and practice, algorithms and systems, reasoning and programming, logics and languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信