用渐进变压器扩散模型建模原子动态断裂机制。

Journal of Applied Mechanics Pub Date : 2022-12-01 Epub Date: 2022-10-06 DOI:10.1115/1.4055730
Markus J Buehler
{"title":"用渐进变压器扩散模型建模原子动态断裂机制。","authors":"Markus J Buehler","doi":"10.1115/1.4055730","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic fracture is an important area of materials analysis, assessing the atomic-level mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bio-inspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure.</p>","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"89 12","pages":"121009"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645704/pdf/jam_89_12_121009.pdf","citationCount":"20","resultStr":"{\"title\":\"Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model.\",\"authors\":\"Markus J Buehler\",\"doi\":\"10.1115/1.4055730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic fracture is an important area of materials analysis, assessing the atomic-level mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bio-inspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure.</p>\",\"PeriodicalId\":508156,\"journal\":{\"name\":\"Journal of Applied Mechanics\",\"volume\":\"89 12\",\"pages\":\"121009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645704/pdf/jam_89_12_121009.pdf\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

动态断裂是材料分析的一个重要领域,用于评估材料随时间而失效的原子水平机制。在这里,我们将重点放在脆性材料的破坏上,并表明原子推导的渐进式变压器扩散机器学习模型可以有效地描述断裂的动力学,捕获裂纹动力学、不稳定性和起裂机制等重要方面。该模型在一个小的原子模拟数据集上进行了训练,可以很好地泛化并快速评估复杂几何形状的动态裂缝机制,远远超出了原始的原子模拟结果集。提出并分析了与用于训练的数据逐渐不同的各种验证案例。验证案例具有独特的几何细节,包括由生成神经网络生成的微观结构,用于识别具有机械性能的新型仿生材料设计。对于所有情况,该模型都表现良好,并捕获了材料失效的关键方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model.

Dynamic fracture is an important area of materials analysis, assessing the atomic-level mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bio-inspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信