Neil R Euliano, Paul Stephan, Konstantinos Michalopoulos, Michael A Gentile, A Joseph Layon, Andrea Gabrielli
{"title":"使用便携式电子界面可改善临床交接和坚持肺保护性通气。","authors":"Neil R Euliano, Paul Stephan, Konstantinos Michalopoulos, Michael A Gentile, A Joseph Layon, Andrea Gabrielli","doi":"10.2147/MDER.S372333","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mechanical ventilation (MV) is used to support patients with respiratory impairment. Evidence supports the use of lung-protective ventilation (LPV) during MV to improve outcomes. However, studies have demonstrated poor adherence to LPV guidelines. We hypothesized that an electronic platform adapted to a hand-held tablet receiving real-time ventilatory parameters could increase clinician awareness of key LPV parameters. Furthermore, we speculated that an electronic shift-change tool could improve the quality of clinician handoffs.</p><p><strong>Methods: </strong>Using a specially designed Wi-Fi dongle to transmit data from three ventilators and a respiratory monitor, we implemented a system that displays data from all ventilators under the care of a Respiratory Care Practitioner (RCP) on an electronic tablet. In addition, the tablet created a handoff checklist to improve shift-change communication. In a simulated ICU environment, we monitored the performance of eight RCPs at baseline and while using the system.</p><p><strong>Results: </strong>Using the system, the time above guideline Pplat decreased by 74% from control, and the time outside the VT range decreased by 60% from control, p = 0.007 and 0.015, respectively. The handoff scores improved quality significantly from 2.8 to 1.6 on a scale of 1 to 5 (1 being best), p = 0.03.</p><p><strong>Conclusion: </strong>In a simulated environment, an electronic RT tool can significantly improve shift-change communication and increase the RCP's level of LPV adherence.</p>","PeriodicalId":47140,"journal":{"name":"Medical Devices-Evidence and Research","volume":" ","pages":"263-275"},"PeriodicalIF":1.3000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/48/mder-15-263.PMC9362905.pdf","citationCount":"0","resultStr":"{\"title\":\"Use of a Portable Electronic Interface Improves Clinical Handoffs and Adherence to Lung Protective Ventilation.\",\"authors\":\"Neil R Euliano, Paul Stephan, Konstantinos Michalopoulos, Michael A Gentile, A Joseph Layon, Andrea Gabrielli\",\"doi\":\"10.2147/MDER.S372333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mechanical ventilation (MV) is used to support patients with respiratory impairment. Evidence supports the use of lung-protective ventilation (LPV) during MV to improve outcomes. However, studies have demonstrated poor adherence to LPV guidelines. We hypothesized that an electronic platform adapted to a hand-held tablet receiving real-time ventilatory parameters could increase clinician awareness of key LPV parameters. Furthermore, we speculated that an electronic shift-change tool could improve the quality of clinician handoffs.</p><p><strong>Methods: </strong>Using a specially designed Wi-Fi dongle to transmit data from three ventilators and a respiratory monitor, we implemented a system that displays data from all ventilators under the care of a Respiratory Care Practitioner (RCP) on an electronic tablet. In addition, the tablet created a handoff checklist to improve shift-change communication. In a simulated ICU environment, we monitored the performance of eight RCPs at baseline and while using the system.</p><p><strong>Results: </strong>Using the system, the time above guideline Pplat decreased by 74% from control, and the time outside the VT range decreased by 60% from control, p = 0.007 and 0.015, respectively. The handoff scores improved quality significantly from 2.8 to 1.6 on a scale of 1 to 5 (1 being best), p = 0.03.</p><p><strong>Conclusion: </strong>In a simulated environment, an electronic RT tool can significantly improve shift-change communication and increase the RCP's level of LPV adherence.</p>\",\"PeriodicalId\":47140,\"journal\":{\"name\":\"Medical Devices-Evidence and Research\",\"volume\":\" \",\"pages\":\"263-275\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/48/mder-15-263.PMC9362905.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Devices-Evidence and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2147/MDER.S372333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Devices-Evidence and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/MDER.S372333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Use of a Portable Electronic Interface Improves Clinical Handoffs and Adherence to Lung Protective Ventilation.
Background: Mechanical ventilation (MV) is used to support patients with respiratory impairment. Evidence supports the use of lung-protective ventilation (LPV) during MV to improve outcomes. However, studies have demonstrated poor adherence to LPV guidelines. We hypothesized that an electronic platform adapted to a hand-held tablet receiving real-time ventilatory parameters could increase clinician awareness of key LPV parameters. Furthermore, we speculated that an electronic shift-change tool could improve the quality of clinician handoffs.
Methods: Using a specially designed Wi-Fi dongle to transmit data from three ventilators and a respiratory monitor, we implemented a system that displays data from all ventilators under the care of a Respiratory Care Practitioner (RCP) on an electronic tablet. In addition, the tablet created a handoff checklist to improve shift-change communication. In a simulated ICU environment, we monitored the performance of eight RCPs at baseline and while using the system.
Results: Using the system, the time above guideline Pplat decreased by 74% from control, and the time outside the VT range decreased by 60% from control, p = 0.007 and 0.015, respectively. The handoff scores improved quality significantly from 2.8 to 1.6 on a scale of 1 to 5 (1 being best), p = 0.03.
Conclusion: In a simulated environment, an electronic RT tool can significantly improve shift-change communication and increase the RCP's level of LPV adherence.