{"title":"用于光电神经形态计算的 CMOS 兼容型 Memristor","authors":"Facai Wu, Chien-Hung Chou, Tseung-Yuen Tseng","doi":"10.1186/s11671-022-03744-x","DOIUrl":null,"url":null,"abstract":"<div><p>Optoelectronic memristor is a promising candidate for future light-controllable high-density storage and neuromorphic computing. In this work, light-tunable resistive switching (RS) characteristics are demonstrated in the CMOS process-compatible ITO/HfO<sub>2</sub>/TiO<sub>2</sub>/ITO optoelectronic memristor. The device shows an average of 79.24% transmittance under visible light. After electroforming, stable bipolar analog switching, data retention beyond 10<sup>4</sup> s, and endurance of 10<sup>6</sup> cycles are realized. An obvious current increase is observed under 405 nm wavelength light irradiation both in high and in low resistance states. The long-term potentiation of synaptic property can be achieved by both electrical and optical stimulation. Moreover, based on the optical potentiation and electrical depression of conductances, the simulated Hopfield neural network (HNN) is trained for learning the 10 × 10 pixels size image. The HNN can be successfully trained to recognize the input image with a training accuracy of 100% in 13 iterations. These results suggest that this optoelectronic memristor has a high potential for neuromorphic application.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"17 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640510/pdf/","citationCount":"0","resultStr":"{\"title\":\"CMOS-Compatible Memristor for Optoelectronic Neuromorphic Computing\",\"authors\":\"Facai Wu, Chien-Hung Chou, Tseung-Yuen Tseng\",\"doi\":\"10.1186/s11671-022-03744-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optoelectronic memristor is a promising candidate for future light-controllable high-density storage and neuromorphic computing. In this work, light-tunable resistive switching (RS) characteristics are demonstrated in the CMOS process-compatible ITO/HfO<sub>2</sub>/TiO<sub>2</sub>/ITO optoelectronic memristor. The device shows an average of 79.24% transmittance under visible light. After electroforming, stable bipolar analog switching, data retention beyond 10<sup>4</sup> s, and endurance of 10<sup>6</sup> cycles are realized. An obvious current increase is observed under 405 nm wavelength light irradiation both in high and in low resistance states. The long-term potentiation of synaptic property can be achieved by both electrical and optical stimulation. Moreover, based on the optical potentiation and electrical depression of conductances, the simulated Hopfield neural network (HNN) is trained for learning the 10 × 10 pixels size image. The HNN can be successfully trained to recognize the input image with a training accuracy of 100% in 13 iterations. These results suggest that this optoelectronic memristor has a high potential for neuromorphic application.</p></div>\",\"PeriodicalId\":715,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7030,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640510/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-022-03744-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-022-03744-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMOS-Compatible Memristor for Optoelectronic Neuromorphic Computing
Optoelectronic memristor is a promising candidate for future light-controllable high-density storage and neuromorphic computing. In this work, light-tunable resistive switching (RS) characteristics are demonstrated in the CMOS process-compatible ITO/HfO2/TiO2/ITO optoelectronic memristor. The device shows an average of 79.24% transmittance under visible light. After electroforming, stable bipolar analog switching, data retention beyond 104 s, and endurance of 106 cycles are realized. An obvious current increase is observed under 405 nm wavelength light irradiation both in high and in low resistance states. The long-term potentiation of synaptic property can be achieved by both electrical and optical stimulation. Moreover, based on the optical potentiation and electrical depression of conductances, the simulated Hopfield neural network (HNN) is trained for learning the 10 × 10 pixels size image. The HNN can be successfully trained to recognize the input image with a training accuracy of 100% in 13 iterations. These results suggest that this optoelectronic memristor has a high potential for neuromorphic application.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.