亚核染色质结构域自动分割的高级图像分析方法。

IF 2.5 Q3 GENETICS & HEREDITY
Philippe Johann To Berens, Geoffrey Schivre, Marius Theune, Jackson Peter, Salimata Ousmane Sall, Jérôme Mutterer, Fredy Barneche, Clara Bourbousse, Jean Molinier
{"title":"亚核染色质结构域自动分割的高级图像分析方法。","authors":"Philippe Johann To Berens,&nbsp;Geoffrey Schivre,&nbsp;Marius Theune,&nbsp;Jackson Peter,&nbsp;Salimata Ousmane Sall,&nbsp;Jérôme Mutterer,&nbsp;Fredy Barneche,&nbsp;Clara Bourbousse,&nbsp;Jean Molinier","doi":"10.3390/epigenomes6040034","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (<i>iCRAQ</i>) and one based on deep learning (<i>Nucl.Eye.D</i>), and their evaluation using a collection of <i>A. thaliana</i> nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624336/pdf/","citationCount":"2","resultStr":"{\"title\":\"Advanced Image Analysis Methods for Automated Segmentation of Subnuclear Chromatin Domains.\",\"authors\":\"Philippe Johann To Berens,&nbsp;Geoffrey Schivre,&nbsp;Marius Theune,&nbsp;Jackson Peter,&nbsp;Salimata Ousmane Sall,&nbsp;Jérôme Mutterer,&nbsp;Fredy Barneche,&nbsp;Clara Bourbousse,&nbsp;Jean Molinier\",\"doi\":\"10.3390/epigenomes6040034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (<i>iCRAQ</i>) and one based on deep learning (<i>Nucl.Eye.D</i>), and their evaluation using a collection of <i>A. thaliana</i> nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.</p>\",\"PeriodicalId\":55768,\"journal\":{\"name\":\"Epigenomes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624336/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/epigenomes6040034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes6040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2

摘要

不断增加的显微镜分辨率与细胞遗传学工具的结合允许细胞核功能分配的详细分析。然而,需要可靠的定性和定量方法来检测和解释染色质亚核组织动力学对于破译潜在的分子过程至关重要。获得适当的自动化工具来准确和快速地识别复杂的核结构仍然是一个重要的问题。认知偏差与基于人类的管理或物体分割决策相关联,往往会在图像分析中引入可变性和噪声。在这里,我们报告了两种互补分割方法的发展,一种是半自动(iCRAQ),另一种是基于深度学习(nucleus . eye . d),并使用具有对比或不明确染色质区隔的拟南蝽细胞核集合对其进行评估。两种方法都允许快速,稳健和敏感的检测以及对细微的核特征的量化。基于这些发展,我们强调了半自动化和基于深度学习的分析应用于植物细胞遗传学的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Image Analysis Methods for Automated Segmentation of Subnuclear Chromatin Domains.

The combination of ever-increasing microscopy resolution with cytogenetical tools allows for detailed analyses of nuclear functional partitioning. However, the need for reliable qualitative and quantitative methodologies to detect and interpret chromatin sub-nuclear organization dynamics is crucial to decipher the underlying molecular processes. Having access to properly automated tools for accurate and fast recognition of complex nuclear structures remains an important issue. Cognitive biases associated with human-based curation or decisions for object segmentation tend to introduce variability and noise into image analysis. Here, we report the development of two complementary segmentation methods, one semi-automated (iCRAQ) and one based on deep learning (Nucl.Eye.D), and their evaluation using a collection of A. thaliana nuclei with contrasted or poorly defined chromatin compartmentalization. Both methods allow for fast, robust and sensitive detection as well as for quantification of subtle nucleus features. Based on these developments, we highlight advantages of semi-automated and deep learning-based analyses applied to plant cytogenetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信