Lei Zhu, Brandon Tan, Selina S Dwight, Brendan Beahm, Matt Wilsey, Brett E Crawford, Becky Schweighardt, Jennifer W Cook, Thomas Wechsler, William F Mueller
{"title":"AAV9-NGLY1基因替代疗法改善NGLY1缺乏症大鼠模型的表型和生物标志物终点。","authors":"Lei Zhu, Brandon Tan, Selina S Dwight, Brendan Beahm, Matt Wilsey, Brett E Crawford, Becky Schweighardt, Jennifer W Cook, Thomas Wechsler, William F Mueller","doi":"10.1016/j.omtm.2022.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>N-glycanase 1 (NGLY1) Deficiency is a progressive, ultra-rare, autosomal recessive disorder with no approved therapy and five core clinical features: severe global developmental delay, hyperkinetic movement disorder, elevated liver transaminases, alacrima, and peripheral neuropathy. Here, we confirmed and characterized the <i>Ngly1</i> <i><sup>-/-</sup></i> <sup><i>/</i></sup> rat as a relevant disease model. GS-100, a gene therapy candidate, is a recombinant, single-stranded adeno-associated virus (AAV) 9 vector designed to deliver a functional copy of the human <i>NGLY1</i> gene. Using the <i>Ngly1</i> <sup>-/-</sup> rat, we tested different administration routes for GS-100: intracerebroventricular (ICV), intravenous (IV), or the dual route (IV + ICV). ICV and IV + ICV administration resulted in widespread biodistribution of human NGLY1 DNA and corresponding mRNA and protein expression in CNS tissues. GS-100 delivered by ICV or IV + ICV significantly reduced levels of the substrate biomarker N-acetylglucosamine-asparagine (GlcNAc-Asn or GNA) in CSF and brain tissue compared with untreated <i>Ngly1<sup>-/-</sup></i> rats. ICV and IV + ICV administration of GS-100 resulted in behavioral improvements in rotarod and rearing tests, whereas IV-only administration did not. IV + ICV did not provide additional benefit compared with ICV administration alone. These data provide evidence that GS-100 could be an effective therapy for NGLY1 Deficiency using the ICV route of administration.</p>","PeriodicalId":517056,"journal":{"name":"Molecular Therapy. Methods & Clinical Development","volume":" ","pages":"259-271"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/14/main.PMC9593239.pdf","citationCount":"4","resultStr":"{\"title\":\"AAV9-NGLY1 gene replacement therapy improves phenotypic and biomarker endpoints in a rat model of NGLY1 Deficiency.\",\"authors\":\"Lei Zhu, Brandon Tan, Selina S Dwight, Brendan Beahm, Matt Wilsey, Brett E Crawford, Becky Schweighardt, Jennifer W Cook, Thomas Wechsler, William F Mueller\",\"doi\":\"10.1016/j.omtm.2022.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N-glycanase 1 (NGLY1) Deficiency is a progressive, ultra-rare, autosomal recessive disorder with no approved therapy and five core clinical features: severe global developmental delay, hyperkinetic movement disorder, elevated liver transaminases, alacrima, and peripheral neuropathy. Here, we confirmed and characterized the <i>Ngly1</i> <i><sup>-/-</sup></i> <sup><i>/</i></sup> rat as a relevant disease model. GS-100, a gene therapy candidate, is a recombinant, single-stranded adeno-associated virus (AAV) 9 vector designed to deliver a functional copy of the human <i>NGLY1</i> gene. Using the <i>Ngly1</i> <sup>-/-</sup> rat, we tested different administration routes for GS-100: intracerebroventricular (ICV), intravenous (IV), or the dual route (IV + ICV). ICV and IV + ICV administration resulted in widespread biodistribution of human NGLY1 DNA and corresponding mRNA and protein expression in CNS tissues. GS-100 delivered by ICV or IV + ICV significantly reduced levels of the substrate biomarker N-acetylglucosamine-asparagine (GlcNAc-Asn or GNA) in CSF and brain tissue compared with untreated <i>Ngly1<sup>-/-</sup></i> rats. ICV and IV + ICV administration of GS-100 resulted in behavioral improvements in rotarod and rearing tests, whereas IV-only administration did not. IV + ICV did not provide additional benefit compared with ICV administration alone. These data provide evidence that GS-100 could be an effective therapy for NGLY1 Deficiency using the ICV route of administration.</p>\",\"PeriodicalId\":517056,\"journal\":{\"name\":\"Molecular Therapy. Methods & Clinical Development\",\"volume\":\" \",\"pages\":\"259-271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/14/main.PMC9593239.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2022.09.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/8 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2022.09.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/8 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
AAV9-NGLY1 gene replacement therapy improves phenotypic and biomarker endpoints in a rat model of NGLY1 Deficiency.
N-glycanase 1 (NGLY1) Deficiency is a progressive, ultra-rare, autosomal recessive disorder with no approved therapy and five core clinical features: severe global developmental delay, hyperkinetic movement disorder, elevated liver transaminases, alacrima, and peripheral neuropathy. Here, we confirmed and characterized the Ngly1-/-/ rat as a relevant disease model. GS-100, a gene therapy candidate, is a recombinant, single-stranded adeno-associated virus (AAV) 9 vector designed to deliver a functional copy of the human NGLY1 gene. Using the Ngly1-/- rat, we tested different administration routes for GS-100: intracerebroventricular (ICV), intravenous (IV), or the dual route (IV + ICV). ICV and IV + ICV administration resulted in widespread biodistribution of human NGLY1 DNA and corresponding mRNA and protein expression in CNS tissues. GS-100 delivered by ICV or IV + ICV significantly reduced levels of the substrate biomarker N-acetylglucosamine-asparagine (GlcNAc-Asn or GNA) in CSF and brain tissue compared with untreated Ngly1-/- rats. ICV and IV + ICV administration of GS-100 resulted in behavioral improvements in rotarod and rearing tests, whereas IV-only administration did not. IV + ICV did not provide additional benefit compared with ICV administration alone. These data provide evidence that GS-100 could be an effective therapy for NGLY1 Deficiency using the ICV route of administration.