{"title":"从儿科内分泌学的角度看氧雄激素。","authors":"Maki Fukami","doi":"10.1297/cpe.2022-0029","DOIUrl":null,"url":null,"abstract":"<p><p>11-Oxyandrogens, such as 11-ketotestosterone (11-KT), 11-ketodihydrotestosterone (11-KDHT), 11β-hydroxytestosterone (11-OHT), 11β-hydroxyandrostenedione (11-OHA4), and 11-KA4, are newly specified human androgens. These 11-oxyandrogens are present in the cord blood and placenta, as well as in the blood of men and women of various ages, and are produced primarily in the adrenal gland. Accumulating evidence suggests that these steroids contribute to androgen excess in patients with 21-hydroxylase deficiency or polycystic ovary syndrome. More importantly, unlike classic androgens, 11-oxyandrogens produced in maternal tumors can pass through the placenta without being converted into estrogens, and cause severe virilization of female fetuses. Thus, overproduction of 11-oxyandrogens represents a new mechanism of 46,XX disorders of sex development. On the other hand, the physiological roles of 11-oxyandrogens remain to be clarified. This mini-review introduces the current understanding of 11-oxyandrogens, from the perspective of pediatric endocrinology.</p>","PeriodicalId":10678,"journal":{"name":"Clinical Pediatric Endocrinology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6d/12/cpe-31-110.PMC9297174.pdf","citationCount":"1","resultStr":"{\"title\":\"11-Oxyandrogens from the viewpoint of pediatric endocrinology.\",\"authors\":\"Maki Fukami\",\"doi\":\"10.1297/cpe.2022-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>11-Oxyandrogens, such as 11-ketotestosterone (11-KT), 11-ketodihydrotestosterone (11-KDHT), 11β-hydroxytestosterone (11-OHT), 11β-hydroxyandrostenedione (11-OHA4), and 11-KA4, are newly specified human androgens. These 11-oxyandrogens are present in the cord blood and placenta, as well as in the blood of men and women of various ages, and are produced primarily in the adrenal gland. Accumulating evidence suggests that these steroids contribute to androgen excess in patients with 21-hydroxylase deficiency or polycystic ovary syndrome. More importantly, unlike classic androgens, 11-oxyandrogens produced in maternal tumors can pass through the placenta without being converted into estrogens, and cause severe virilization of female fetuses. Thus, overproduction of 11-oxyandrogens represents a new mechanism of 46,XX disorders of sex development. On the other hand, the physiological roles of 11-oxyandrogens remain to be clarified. This mini-review introduces the current understanding of 11-oxyandrogens, from the perspective of pediatric endocrinology.</p>\",\"PeriodicalId\":10678,\"journal\":{\"name\":\"Clinical Pediatric Endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6d/12/cpe-31-110.PMC9297174.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pediatric Endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1297/cpe.2022-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pediatric Endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1297/cpe.2022-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
11-Oxyandrogens from the viewpoint of pediatric endocrinology.
11-Oxyandrogens, such as 11-ketotestosterone (11-KT), 11-ketodihydrotestosterone (11-KDHT), 11β-hydroxytestosterone (11-OHT), 11β-hydroxyandrostenedione (11-OHA4), and 11-KA4, are newly specified human androgens. These 11-oxyandrogens are present in the cord blood and placenta, as well as in the blood of men and women of various ages, and are produced primarily in the adrenal gland. Accumulating evidence suggests that these steroids contribute to androgen excess in patients with 21-hydroxylase deficiency or polycystic ovary syndrome. More importantly, unlike classic androgens, 11-oxyandrogens produced in maternal tumors can pass through the placenta without being converted into estrogens, and cause severe virilization of female fetuses. Thus, overproduction of 11-oxyandrogens represents a new mechanism of 46,XX disorders of sex development. On the other hand, the physiological roles of 11-oxyandrogens remain to be clarified. This mini-review introduces the current understanding of 11-oxyandrogens, from the perspective of pediatric endocrinology.