求解半定规划问题的平滑梯度神经网络策略。

Network (Bristol, England) Pub Date : 2022-08-01 Epub Date: 2022-08-04 DOI:10.1080/0954898X.2022.2104463
Asiye Nikseresht, Alireza Nazemi
{"title":"求解半定规划问题的平滑梯度神经网络策略。","authors":"Asiye Nikseresht,&nbsp;Alireza Nazemi","doi":"10.1080/0954898X.2022.2104463","DOIUrl":null,"url":null,"abstract":"<p><p>Linear semidefinite programming problems have received a lot of attentions because of large variety of applications. This paper deals with a smooth gradient neural network scheme for solving semidefinite programming problems. According to some properties of convex analysis and using a merit function in matrix form, a neural network model is constructed. It is shown that the proposed neural network is asymptotically stable and converges to an exact optimal solution of the semidefinite programming problem. Numerical simulations are given to show that the numerical behaviours are in good agreement with the theoretical results.</p>","PeriodicalId":520718,"journal":{"name":"Network (Bristol, England)","volume":" ","pages":"187-213"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A smoothing gradient-based neural network strategy for solving semidefinite programming problems.\",\"authors\":\"Asiye Nikseresht,&nbsp;Alireza Nazemi\",\"doi\":\"10.1080/0954898X.2022.2104463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Linear semidefinite programming problems have received a lot of attentions because of large variety of applications. This paper deals with a smooth gradient neural network scheme for solving semidefinite programming problems. According to some properties of convex analysis and using a merit function in matrix form, a neural network model is constructed. It is shown that the proposed neural network is asymptotically stable and converges to an exact optimal solution of the semidefinite programming problem. Numerical simulations are given to show that the numerical behaviours are in good agreement with the theoretical results.</p>\",\"PeriodicalId\":520718,\"journal\":{\"name\":\"Network (Bristol, England)\",\"volume\":\" \",\"pages\":\"187-213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network (Bristol, England)\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2022.2104463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network (Bristol, England)","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2022.2104463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性半定规划问题由于其广泛的应用而受到广泛的关注。研究一种求解半定规划问题的光滑梯度神经网络方案。根据凸分析的一些性质,利用矩阵形式的优点函数,构造了一个神经网络模型。结果表明,所提出的神经网络是渐近稳定的,并收敛于半定规划问题的精确最优解。数值模拟结果表明,数值行为与理论结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A smoothing gradient-based neural network strategy for solving semidefinite programming problems.

Linear semidefinite programming problems have received a lot of attentions because of large variety of applications. This paper deals with a smooth gradient neural network scheme for solving semidefinite programming problems. According to some properties of convex analysis and using a merit function in matrix form, a neural network model is constructed. It is shown that the proposed neural network is asymptotically stable and converges to an exact optimal solution of the semidefinite programming problem. Numerical simulations are given to show that the numerical behaviours are in good agreement with the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信