{"title":"厌氧消化池的二维SPH模拟","authors":"Prashant Kumar, Soroush Dabiri, Wolfgang Rauch","doi":"10.1007/s40571-022-00474-w","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the hydrodynamics within the anaerobic digester tank of a wastewater treatment plant is of high importance to ensure sufficient mixing and subsequently a homogeneous distribution of the substrates. In this paper, we demonstrate a two-dimensional computational fluid dynamics simulation of a real-world case study focusing on both, the methodology and the operation of mixing. For this work, DualSPHysics, a Lagrangian solver, has been explored as an alternative to the more commonly used Eulerian solvers in studying the slow-moving dynamics inside a digester tank. This choice of a Lagrangian solver is primarily due to the inherent accounting for advection within the formulation, thus allowing for subsequent modelling of anaerobic digestion processes. A comparison has been made between the simulations from the two methods (Eulerian and Lagrangian), highlighting the benefits and the shortcomings of using smoothed particle hydrodynamics. Concerning operational mixing, the case relies on a draft tube, the effect of which on the velocity profiles has been studied based on the presence of low-velocity zones and Lagrangian coherent structures. Removing the draft tube results in an increase in low-velocity zones by 21.38% while the amount of dead volume increases from 0.52 to 1.2%.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"9 5","pages":"1073 - 1083"},"PeriodicalIF":2.8000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-022-00474-w.pdf","citationCount":"2","resultStr":"{\"title\":\"2D SPH simulation of an anaerobic digester\",\"authors\":\"Prashant Kumar, Soroush Dabiri, Wolfgang Rauch\",\"doi\":\"10.1007/s40571-022-00474-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the hydrodynamics within the anaerobic digester tank of a wastewater treatment plant is of high importance to ensure sufficient mixing and subsequently a homogeneous distribution of the substrates. In this paper, we demonstrate a two-dimensional computational fluid dynamics simulation of a real-world case study focusing on both, the methodology and the operation of mixing. For this work, DualSPHysics, a Lagrangian solver, has been explored as an alternative to the more commonly used Eulerian solvers in studying the slow-moving dynamics inside a digester tank. This choice of a Lagrangian solver is primarily due to the inherent accounting for advection within the formulation, thus allowing for subsequent modelling of anaerobic digestion processes. A comparison has been made between the simulations from the two methods (Eulerian and Lagrangian), highlighting the benefits and the shortcomings of using smoothed particle hydrodynamics. Concerning operational mixing, the case relies on a draft tube, the effect of which on the velocity profiles has been studied based on the presence of low-velocity zones and Lagrangian coherent structures. Removing the draft tube results in an increase in low-velocity zones by 21.38% while the amount of dead volume increases from 0.52 to 1.2%.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"9 5\",\"pages\":\"1073 - 1083\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40571-022-00474-w.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-022-00474-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-022-00474-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Understanding the hydrodynamics within the anaerobic digester tank of a wastewater treatment plant is of high importance to ensure sufficient mixing and subsequently a homogeneous distribution of the substrates. In this paper, we demonstrate a two-dimensional computational fluid dynamics simulation of a real-world case study focusing on both, the methodology and the operation of mixing. For this work, DualSPHysics, a Lagrangian solver, has been explored as an alternative to the more commonly used Eulerian solvers in studying the slow-moving dynamics inside a digester tank. This choice of a Lagrangian solver is primarily due to the inherent accounting for advection within the formulation, thus allowing for subsequent modelling of anaerobic digestion processes. A comparison has been made between the simulations from the two methods (Eulerian and Lagrangian), highlighting the benefits and the shortcomings of using smoothed particle hydrodynamics. Concerning operational mixing, the case relies on a draft tube, the effect of which on the velocity profiles has been studied based on the presence of low-velocity zones and Lagrangian coherent structures. Removing the draft tube results in an increase in low-velocity zones by 21.38% while the amount of dead volume increases from 0.52 to 1.2%.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.