sr3缺乏会加重小鼠脂多糖诱导的急性呼吸窘迫综合征。

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM
Experimental Lung Research Pub Date : 2022-04-01 Epub Date: 2022-08-02 DOI:10.1080/01902148.2022.2104958
Meixia Cui, Shengtong Guo, Ying Cui
{"title":"sr3缺乏会加重小鼠脂多糖诱导的急性呼吸窘迫综合征。","authors":"Meixia Cui,&nbsp;Shengtong Guo,&nbsp;Ying Cui","doi":"10.1080/01902148.2022.2104958","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a severe disease. Inflammation is the key element implicated in ARDS. Steroid receptor coactivator 3 (SRC3), a coactivator protein for transcription, is involved in regulation of inflammatory response. Here we explored the potential roles of SRC3 in ARDS. We utilized the SRC3 deficient (SRC3<sup>-/-</sup>) mice and established the lipopolysaccharides (LPS)-induced ARDS model. The mortality, lung injury, leucocytes infiltration and inflammatory cytokine production were compared between wild type (WT) and SRC3<sup>-/-</sup> mice. The NF-κB activation in lung of WT and SRC3<sup>-/-</sup> mice was measured. After LPS treatment, SRC3<sup>-/-</sup> mice had higher mortality and more severe lung damage than WT mice. LPS-treated SRC3<sup>-/-</sup> mice had more leucocytes infiltration and upregulated inflammatory cytokine production. LPS-treated SRC3<sup>-/-</sup> mice had elevated NF-κB activation. SRC3<sup>-/-</sup> mice had exacerbated ARDS in LPS-treated mice.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":" ","pages":"178-186"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SRC3 deficiency exacerbates lipopolysaccharide-induced acute respiratory distress syndrome in mice.\",\"authors\":\"Meixia Cui,&nbsp;Shengtong Guo,&nbsp;Ying Cui\",\"doi\":\"10.1080/01902148.2022.2104958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute respiratory distress syndrome (ARDS) is a severe disease. Inflammation is the key element implicated in ARDS. Steroid receptor coactivator 3 (SRC3), a coactivator protein for transcription, is involved in regulation of inflammatory response. Here we explored the potential roles of SRC3 in ARDS. We utilized the SRC3 deficient (SRC3<sup>-/-</sup>) mice and established the lipopolysaccharides (LPS)-induced ARDS model. The mortality, lung injury, leucocytes infiltration and inflammatory cytokine production were compared between wild type (WT) and SRC3<sup>-/-</sup> mice. The NF-κB activation in lung of WT and SRC3<sup>-/-</sup> mice was measured. After LPS treatment, SRC3<sup>-/-</sup> mice had higher mortality and more severe lung damage than WT mice. LPS-treated SRC3<sup>-/-</sup> mice had more leucocytes infiltration and upregulated inflammatory cytokine production. LPS-treated SRC3<sup>-/-</sup> mice had elevated NF-κB activation. SRC3<sup>-/-</sup> mice had exacerbated ARDS in LPS-treated mice.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\" \",\"pages\":\"178-186\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2022.2104958\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2022.2104958","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

急性呼吸窘迫综合征(ARDS)是一种严重的疾病。炎症是ARDS的关键因素。类固醇受体共激活因子3 (SRC3)是一种转录共激活蛋白,参与炎症反应的调节。本文探讨了SRC3在ARDS中的潜在作用。我们利用SRC3缺陷(SRC3-/-)小鼠,建立脂多糖(LPS)诱导的ARDS模型。比较野生型(WT)和SRC3-/-小鼠的死亡率、肺损伤、白细胞浸润和炎性细胞因子的产生。观察WT和SRC3-/-小鼠肺组织NF-κ b活化情况。LPS处理后,sr3 -/-小鼠比WT小鼠死亡率更高,肺损伤更严重。lps处理的sr3 -/-小鼠有更多的白细胞浸润和上调炎症细胞因子的产生。lps处理的sr3 -/-小鼠NF-κ b活性升高。sr3 -/-小鼠加重了lps处理小鼠的ARDS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SRC3 deficiency exacerbates lipopolysaccharide-induced acute respiratory distress syndrome in mice.

Acute respiratory distress syndrome (ARDS) is a severe disease. Inflammation is the key element implicated in ARDS. Steroid receptor coactivator 3 (SRC3), a coactivator protein for transcription, is involved in regulation of inflammatory response. Here we explored the potential roles of SRC3 in ARDS. We utilized the SRC3 deficient (SRC3-/-) mice and established the lipopolysaccharides (LPS)-induced ARDS model. The mortality, lung injury, leucocytes infiltration and inflammatory cytokine production were compared between wild type (WT) and SRC3-/- mice. The NF-κB activation in lung of WT and SRC3-/- mice was measured. After LPS treatment, SRC3-/- mice had higher mortality and more severe lung damage than WT mice. LPS-treated SRC3-/- mice had more leucocytes infiltration and upregulated inflammatory cytokine production. LPS-treated SRC3-/- mice had elevated NF-κB activation. SRC3-/- mice had exacerbated ARDS in LPS-treated mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信