扩散性去极化:大脑中的一种现象。

IF 0.8 4区 医学 Q4 NEUROSCIENCES
R Aboghazleh, B Alkahmous, B Turan, M C Tuncer
{"title":"扩散性去极化:大脑中的一种现象。","authors":"R Aboghazleh,&nbsp;B Alkahmous,&nbsp;B Turan,&nbsp;M C Tuncer","doi":"10.12871/000398292022123","DOIUrl":null,"url":null,"abstract":"<p><p>In 1944, the physiologist Leão while studying epilepsy in the rabbit noticed a sudden temporary cessation of electrocorticographic (ECoG) activity accompanied with a large negative slow potential change recorded by extracellular electrodes, that is later known as spreading depolarizations (SDs). The depression of the brain electrical activity was slowly propagating through the cerebral cortex. The mechanism of propagation is still controversial. SDs and seizures are following each other interchangeably, yet the puzzle needs more investigation to be clarified. SDs have an obvious effect on blood-brain barrier integrity mainly through transcellular and paracellular routs, but not much known about that especially following traumatic brain injury (TBI). The cortical spreading depolarization (CSD) and the depression of brain activity have been recognized following a variety of neurological diseases and brain injuries. CSD has been studied in animal models and recently in humans, and it has been recognized and described as a massive neuronal depolarization accompanied with high level of disturbances in transmembrane ion gradients and significant changes in cerebral blood flow (1-3). Although there is a considerable amount of literatures on SD have been done since 1944, but the biophysical mechanism of SD, the long term effect on the brain structures and functions, and it is role in different disorders are still incompletely understood.Here, we summarize the history of spreading depolarization and the most accepted hypothesis for mechanism of initiation and propagation of that phenomenon. Most importantly, we present the most updated research on the relationship and interaction between spreading depolarization and traumatic brain injuries, seizure, blood-brain barrier, neurovascular coupling, and other neurological conditions. Learning more about the spreading depolarization will increase our understanding about that phenomenon and may explain its association with different clinical presentations.</p>","PeriodicalId":55476,"journal":{"name":"Archives Italiennes De Biologie","volume":"160 1-2","pages":"28-41"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spreading depolarization: A phenomenon in the brain.\",\"authors\":\"R Aboghazleh,&nbsp;B Alkahmous,&nbsp;B Turan,&nbsp;M C Tuncer\",\"doi\":\"10.12871/000398292022123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 1944, the physiologist Leão while studying epilepsy in the rabbit noticed a sudden temporary cessation of electrocorticographic (ECoG) activity accompanied with a large negative slow potential change recorded by extracellular electrodes, that is later known as spreading depolarizations (SDs). The depression of the brain electrical activity was slowly propagating through the cerebral cortex. The mechanism of propagation is still controversial. SDs and seizures are following each other interchangeably, yet the puzzle needs more investigation to be clarified. SDs have an obvious effect on blood-brain barrier integrity mainly through transcellular and paracellular routs, but not much known about that especially following traumatic brain injury (TBI). The cortical spreading depolarization (CSD) and the depression of brain activity have been recognized following a variety of neurological diseases and brain injuries. CSD has been studied in animal models and recently in humans, and it has been recognized and described as a massive neuronal depolarization accompanied with high level of disturbances in transmembrane ion gradients and significant changes in cerebral blood flow (1-3). Although there is a considerable amount of literatures on SD have been done since 1944, but the biophysical mechanism of SD, the long term effect on the brain structures and functions, and it is role in different disorders are still incompletely understood.Here, we summarize the history of spreading depolarization and the most accepted hypothesis for mechanism of initiation and propagation of that phenomenon. Most importantly, we present the most updated research on the relationship and interaction between spreading depolarization and traumatic brain injuries, seizure, blood-brain barrier, neurovascular coupling, and other neurological conditions. Learning more about the spreading depolarization will increase our understanding about that phenomenon and may explain its association with different clinical presentations.</p>\",\"PeriodicalId\":55476,\"journal\":{\"name\":\"Archives Italiennes De Biologie\",\"volume\":\"160 1-2\",\"pages\":\"28-41\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives Italiennes De Biologie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12871/000398292022123\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives Italiennes De Biologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12871/000398292022123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

1944年,生理学家le o在研究兔癫痫时注意到皮质电图(ECoG)活动突然暂时停止,并伴有细胞外电极记录的巨大的负缓慢电位变化,这后来被称为扩张性去极化(SDs)。大脑电活动的抑制缓慢地通过大脑皮层传播。其传播机制仍有争议。SDs和缉获相辅相成,但这一谜题需要更多的调查来澄清。SDs对血脑屏障完整性的影响主要是通过胞外和胞外通路,但对创伤性脑损伤(TBI)后的血脑屏障完整性影响尚不清楚。皮层扩张性去极化(CSD)和脑活动的抑制已被公认在各种神经系统疾病和脑损伤后。CSD已经在动物模型中进行了研究,最近在人类中进行了研究,它被认为是一种大规模的神经元去极化,伴随着跨膜离子梯度的高水平干扰和脑血流量的显著变化(1-3)。虽然自1944年以来已有大量关于SD的文献,但SD的生物物理机制、对大脑结构和功能的长期影响以及在不同疾病中的作用仍不完全清楚。在此,我们总结了扩散去极化的历史,以及最被接受的关于该现象产生和传播机制的假设。最重要的是,我们介绍了扩张性去极化与创伤性脑损伤、癫痫、血脑屏障、神经血管耦合和其他神经系统疾病之间的关系和相互作用的最新研究。更多地了解扩散性去极化将增加我们对这一现象的理解,并可能解释其与不同临床表现的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spreading depolarization: A phenomenon in the brain.

In 1944, the physiologist Leão while studying epilepsy in the rabbit noticed a sudden temporary cessation of electrocorticographic (ECoG) activity accompanied with a large negative slow potential change recorded by extracellular electrodes, that is later known as spreading depolarizations (SDs). The depression of the brain electrical activity was slowly propagating through the cerebral cortex. The mechanism of propagation is still controversial. SDs and seizures are following each other interchangeably, yet the puzzle needs more investigation to be clarified. SDs have an obvious effect on blood-brain barrier integrity mainly through transcellular and paracellular routs, but not much known about that especially following traumatic brain injury (TBI). The cortical spreading depolarization (CSD) and the depression of brain activity have been recognized following a variety of neurological diseases and brain injuries. CSD has been studied in animal models and recently in humans, and it has been recognized and described as a massive neuronal depolarization accompanied with high level of disturbances in transmembrane ion gradients and significant changes in cerebral blood flow (1-3). Although there is a considerable amount of literatures on SD have been done since 1944, but the biophysical mechanism of SD, the long term effect on the brain structures and functions, and it is role in different disorders are still incompletely understood.Here, we summarize the history of spreading depolarization and the most accepted hypothesis for mechanism of initiation and propagation of that phenomenon. Most importantly, we present the most updated research on the relationship and interaction between spreading depolarization and traumatic brain injuries, seizure, blood-brain barrier, neurovascular coupling, and other neurological conditions. Learning more about the spreading depolarization will increase our understanding about that phenomenon and may explain its association with different clinical presentations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives Italiennes De Biologie
Archives Italiennes De Biologie 医学-神经科学
CiteScore
2.10
自引率
30.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Archives Italiennes de Biologie - a Journal of Neuroscience- was founded in 1882 and represents one of the oldest neuroscience journals in the world. Archives publishes original contributions in all the fields of neuroscience, including neurophysiology, experimental neuroanatomy and electron microscopy, neurobiology, neurochemistry, molecular biology, genetics, functional brain imaging and behavioral science. Archives Italiennes de Biologie also publishes monographic special issues that collect papers on a specific topic of interest in neuroscience as well as the proceedings of important scientific events. Archives Italiennes de Biologie is published in 4 issues per year and is indexed in the major collections of biomedical journals, including Medline, PubMed, Current Contents, Excerpta Medica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信