{"title":"去甲基zeylastal (T-96)通过lsd1介导的表观遗传机制对三阴性乳腺癌的抗肿瘤作用。","authors":"Zhengjie Shen, Yongjuan Gu, Ruiyang Jiang, Heya Qian, Siyuan Li, Lixian Xu, Wenzhe Gu, Yun Zuo","doi":"10.1155/2022/2522597","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background and Purpose</i>. Breast cancer ranks first in the incidence of female tumors. Triple-negative breast cancer (TNBC), one type of breast cancer, is more aggressive and has a worse prognosis. Demethylzeylasteral (T-96) is isolated from <i>Tripterygium wilfordii</i> Hook F. Our previous study found that T96 could inhibit TNBC invasion via suppressing the canonical and noncanonical TGF-<i>β</i> signaling pathways. However, the antitumor effects and mechanisms of T-96 on TNBC have not been studied. This study is aimed at investigating the antitumor effect and mechanism of T-96 on breast cancer. <i>Experimental approach</i>. MTT assay, Live and Dead cell assay, and TUNEL were used to observe the antitumor effect of breast cancer cells treated with T-96. siRNA of LSD1, Co-IP, and molecular docking were used to explore the direct target and mechanism of T-96. Subcutaneous murine xenograft models were used to detect the efficacy of T-96 antitumor activity in vivo. <i>Key Results</i>. T-96 was more susceptible to inducing the apoptosis of highly metastatic TNBC cell lines (SUM-1315). An abnormal level of histone methylation is a crucial characteristic of metastatic cancer cells. LSD1 is a histone demethylase. We found that T-96 could significantly decrease the protein expression of LSD1, increase its target protein PTEN expression and enhance histone methylation. T-96 could also down-regulate the PI3K/AKT signaling pathway, which could be blocked by PTEN. Knockdown of LSD1 by siRNA blocked the pharmacological activity of T-96. And the molecular docking predicted T-96 processed affinity toward LSD1 through hydrogen bonding. Finally, T-96 was evaluated in a murine xenograft model of SUM-1315 cells. And T-96 could significantly inhibit tumor growth without showing marked toxicity. <i>Conclusions & Implications</i>. The results illustrated that T-96 exerted antitumor activity in highly metastatic TNBC by inactivating the LSD1 function.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antitumor Effect of Demethylzeylasteral (T-96) on Triple-Negative Breast Cancer via LSD1-Mediate Epigenetic Mechanisms.\",\"authors\":\"Zhengjie Shen, Yongjuan Gu, Ruiyang Jiang, Heya Qian, Siyuan Li, Lixian Xu, Wenzhe Gu, Yun Zuo\",\"doi\":\"10.1155/2022/2522597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background and Purpose</i>. Breast cancer ranks first in the incidence of female tumors. Triple-negative breast cancer (TNBC), one type of breast cancer, is more aggressive and has a worse prognosis. Demethylzeylasteral (T-96) is isolated from <i>Tripterygium wilfordii</i> Hook F. Our previous study found that T96 could inhibit TNBC invasion via suppressing the canonical and noncanonical TGF-<i>β</i> signaling pathways. However, the antitumor effects and mechanisms of T-96 on TNBC have not been studied. This study is aimed at investigating the antitumor effect and mechanism of T-96 on breast cancer. <i>Experimental approach</i>. MTT assay, Live and Dead cell assay, and TUNEL were used to observe the antitumor effect of breast cancer cells treated with T-96. siRNA of LSD1, Co-IP, and molecular docking were used to explore the direct target and mechanism of T-96. Subcutaneous murine xenograft models were used to detect the efficacy of T-96 antitumor activity in vivo. <i>Key Results</i>. T-96 was more susceptible to inducing the apoptosis of highly metastatic TNBC cell lines (SUM-1315). An abnormal level of histone methylation is a crucial characteristic of metastatic cancer cells. LSD1 is a histone demethylase. We found that T-96 could significantly decrease the protein expression of LSD1, increase its target protein PTEN expression and enhance histone methylation. T-96 could also down-regulate the PI3K/AKT signaling pathway, which could be blocked by PTEN. Knockdown of LSD1 by siRNA blocked the pharmacological activity of T-96. And the molecular docking predicted T-96 processed affinity toward LSD1 through hydrogen bonding. Finally, T-96 was evaluated in a murine xenograft model of SUM-1315 cells. And T-96 could significantly inhibit tumor growth without showing marked toxicity. <i>Conclusions & Implications</i>. The results illustrated that T-96 exerted antitumor activity in highly metastatic TNBC by inactivating the LSD1 function.</p>\",\"PeriodicalId\":49326,\"journal\":{\"name\":\"Analytical Cellular Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2522597\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/2522597","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Antitumor Effect of Demethylzeylasteral (T-96) on Triple-Negative Breast Cancer via LSD1-Mediate Epigenetic Mechanisms.
Background and Purpose. Breast cancer ranks first in the incidence of female tumors. Triple-negative breast cancer (TNBC), one type of breast cancer, is more aggressive and has a worse prognosis. Demethylzeylasteral (T-96) is isolated from Tripterygium wilfordii Hook F. Our previous study found that T96 could inhibit TNBC invasion via suppressing the canonical and noncanonical TGF-β signaling pathways. However, the antitumor effects and mechanisms of T-96 on TNBC have not been studied. This study is aimed at investigating the antitumor effect and mechanism of T-96 on breast cancer. Experimental approach. MTT assay, Live and Dead cell assay, and TUNEL were used to observe the antitumor effect of breast cancer cells treated with T-96. siRNA of LSD1, Co-IP, and molecular docking were used to explore the direct target and mechanism of T-96. Subcutaneous murine xenograft models were used to detect the efficacy of T-96 antitumor activity in vivo. Key Results. T-96 was more susceptible to inducing the apoptosis of highly metastatic TNBC cell lines (SUM-1315). An abnormal level of histone methylation is a crucial characteristic of metastatic cancer cells. LSD1 is a histone demethylase. We found that T-96 could significantly decrease the protein expression of LSD1, increase its target protein PTEN expression and enhance histone methylation. T-96 could also down-regulate the PI3K/AKT signaling pathway, which could be blocked by PTEN. Knockdown of LSD1 by siRNA blocked the pharmacological activity of T-96. And the molecular docking predicted T-96 processed affinity toward LSD1 through hydrogen bonding. Finally, T-96 was evaluated in a murine xenograft model of SUM-1315 cells. And T-96 could significantly inhibit tumor growth without showing marked toxicity. Conclusions & Implications. The results illustrated that T-96 exerted antitumor activity in highly metastatic TNBC by inactivating the LSD1 function.
期刊介绍:
Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.