有理同伦理论中纤维X的普遍纤维化

IF 0.5 4区 数学
Gregory Lupton, Samuel Bruce Smith
{"title":"有理同伦理论中纤维X的普遍纤维化","authors":"Gregory Lupton,&nbsp;Samuel Bruce Smith","doi":"10.1007/s40062-020-00258-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a simply connected space with finite-dimensional rational homotopy groups. Let <span>\\(p_\\infty :UE \\rightarrow B\\mathrm {aut}_1(X)\\)</span> be the universal fibration of simply connected spaces with fibre <i>X</i>. We give a DG Lie algebra model for the evaluation map <span>\\( \\omega :\\mathrm {aut}_1(B\\mathrm {aut}_1(X_\\mathbb {Q})) \\rightarrow B\\mathrm {aut}_1(X_\\mathbb {Q})\\)</span> expressed in terms of derivations of the relative Sullivan model of <span>\\(p_\\infty \\)</span>. We deduce formulas for the rational Gottlieb group and for the evaluation subgroups of the classifying space <span>\\(B\\mathrm {aut}_1(X_\\mathbb {Q})\\)</span> as a consequence. We also prove that <span>\\(\\mathbb {C} P^n_\\mathbb {Q}\\)</span> cannot be realized as <span>\\(B\\mathrm {aut}_1(X_\\mathbb {Q})\\)</span> for <span>\\(n \\le 4\\)</span> and <i>X</i> with finite-dimensional rational homotopy groups.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 2","pages":"351 - 368"},"PeriodicalIF":0.5000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00258-0","citationCount":"2","resultStr":"{\"title\":\"The universal fibration with fibre X in rational homotopy theory\",\"authors\":\"Gregory Lupton,&nbsp;Samuel Bruce Smith\",\"doi\":\"10.1007/s40062-020-00258-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a simply connected space with finite-dimensional rational homotopy groups. Let <span>\\\\(p_\\\\infty :UE \\\\rightarrow B\\\\mathrm {aut}_1(X)\\\\)</span> be the universal fibration of simply connected spaces with fibre <i>X</i>. We give a DG Lie algebra model for the evaluation map <span>\\\\( \\\\omega :\\\\mathrm {aut}_1(B\\\\mathrm {aut}_1(X_\\\\mathbb {Q})) \\\\rightarrow B\\\\mathrm {aut}_1(X_\\\\mathbb {Q})\\\\)</span> expressed in terms of derivations of the relative Sullivan model of <span>\\\\(p_\\\\infty \\\\)</span>. We deduce formulas for the rational Gottlieb group and for the evaluation subgroups of the classifying space <span>\\\\(B\\\\mathrm {aut}_1(X_\\\\mathbb {Q})\\\\)</span> as a consequence. We also prove that <span>\\\\(\\\\mathbb {C} P^n_\\\\mathbb {Q}\\\\)</span> cannot be realized as <span>\\\\(B\\\\mathrm {aut}_1(X_\\\\mathbb {Q})\\\\)</span> for <span>\\\\(n \\\\le 4\\\\)</span> and <i>X</i> with finite-dimensional rational homotopy groups.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 2\",\"pages\":\"351 - 368\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00258-0\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00258-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00258-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设X是具有有限维有理同伦群的单连通空间。设\(p_\infty :UE \rightarrow B\mathrm {aut}_1(X)\)为具有纤维x的单连通空间的普遍纤维。我们给出了用\(p_\infty \)的相对Sullivan模型的导数表示的评价映射\( \omega :\mathrm {aut}_1(B\mathrm {aut}_1(X_\mathbb {Q})) \rightarrow B\mathrm {aut}_1(X_\mathbb {Q})\)的DG李代数模型。因此,我们推导出了有理Gottlieb群和分类空间\(B\mathrm {aut}_1(X_\mathbb {Q})\)的评价子群的公式。并证明了对于具有有限维有理同伦群的\(n \le 4\)和X, \(\mathbb {C} P^n_\mathbb {Q}\)不能实现为\(B\mathrm {aut}_1(X_\mathbb {Q})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The universal fibration with fibre X in rational homotopy theory

Let X be a simply connected space with finite-dimensional rational homotopy groups. Let \(p_\infty :UE \rightarrow B\mathrm {aut}_1(X)\) be the universal fibration of simply connected spaces with fibre X. We give a DG Lie algebra model for the evaluation map \( \omega :\mathrm {aut}_1(B\mathrm {aut}_1(X_\mathbb {Q})) \rightarrow B\mathrm {aut}_1(X_\mathbb {Q})\) expressed in terms of derivations of the relative Sullivan model of \(p_\infty \). We deduce formulas for the rational Gottlieb group and for the evaluation subgroups of the classifying space \(B\mathrm {aut}_1(X_\mathbb {Q})\) as a consequence. We also prove that \(\mathbb {C} P^n_\mathbb {Q}\) cannot be realized as \(B\mathrm {aut}_1(X_\mathbb {Q})\) for \(n \le 4\) and X with finite-dimensional rational homotopy groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信