Yuchang Zhang, Ping Zhao, Sen Li, Xiangqian Mu, Huaqi Wang
{"title":"CircSCAPER敲低可减弱il -1β诱导的骨关节炎中miR-127-5p/TLR4轴的软骨细胞损伤。","authors":"Yuchang Zhang, Ping Zhao, Sen Li, Xiangqian Mu, Huaqi Wang","doi":"10.1080/08916934.2022.2103798","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osteoarthritis (OA) is a chronic inflammatory degenerative disease characterized by articular cartilage degradation. Circular RNAs have been shown to play significant roles in OA process. Herein, this work aimed to investigate the potential role and mechanism of circSCAPER in OA progression.</p><p><strong>Methods: </strong>Levels of circSCAPER, miR-127-5p and toll-like receptor 4 (TLR4) were detected by qRT-PCR or western blotting. Cell apoptosis was determined by flow cytometry. The expression of Aggrecan and Matrix metallopeptidase was examined using western blot to assess extracellular matrix (ECM) degradation. Inflammatory response and oxidative stress were determined by measuring the release of inflammatory factors, along with the generation of intracellular reactive oxygen species and malondialdehyde. The interaction between miR-127-5p and circSCAPER or TLR4 was determined by dual-luciferase reporter, RNA immunoprecipitation and pull-down assays.</p><p><strong>Results: </strong>Chondrocytes were treated with interleukin-1β (IL-1β) to mimic OA condition in vitro. CircSCAPER was increased in OA cartilages and IL-1β-induced chondrocytes. Functionally, knockdown of circSCAPER attenuated IL-1β-evoked apoptosis, ECM degradation, inflammation and oxidative stress in vitro. CircSCAPER up-regulation in OA cartilages was discovered to be accompanied by decreased miR-127-5p and increased TLR4. Mechanistically, circSCAPER acted as a sponge for miR-127-5p to positively regulate TLR4 expression in chondrocytes. IL-1β treatment reduced miR-127-5p expression but up-regulated TLR4 expression, re-expression of miR-127-5p suppressed IL-1β-caused chondrocyte injury, which was abolished by TLR4 overexpression. Moreover, miR-127-5p inhibition reversed the protective action of circSCAPER knockdown on chondrocytes under IL-1β treatment.</p><p><strong>Conclusion: </strong>CircSCAPER silencing protected against IL-1β-induced apoptosis, ECM degradation, inflammation and oxidative stress in chondrocytes via miR-127-5p/TLR4 axis.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CircSCAPER knockdown attenuates IL-1β-induced chondrocyte injury by miR-127-5p/TLR4 axis in osteoarthritis.\",\"authors\":\"Yuchang Zhang, Ping Zhao, Sen Li, Xiangqian Mu, Huaqi Wang\",\"doi\":\"10.1080/08916934.2022.2103798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Osteoarthritis (OA) is a chronic inflammatory degenerative disease characterized by articular cartilage degradation. Circular RNAs have been shown to play significant roles in OA process. Herein, this work aimed to investigate the potential role and mechanism of circSCAPER in OA progression.</p><p><strong>Methods: </strong>Levels of circSCAPER, miR-127-5p and toll-like receptor 4 (TLR4) were detected by qRT-PCR or western blotting. Cell apoptosis was determined by flow cytometry. The expression of Aggrecan and Matrix metallopeptidase was examined using western blot to assess extracellular matrix (ECM) degradation. Inflammatory response and oxidative stress were determined by measuring the release of inflammatory factors, along with the generation of intracellular reactive oxygen species and malondialdehyde. The interaction between miR-127-5p and circSCAPER or TLR4 was determined by dual-luciferase reporter, RNA immunoprecipitation and pull-down assays.</p><p><strong>Results: </strong>Chondrocytes were treated with interleukin-1β (IL-1β) to mimic OA condition in vitro. CircSCAPER was increased in OA cartilages and IL-1β-induced chondrocytes. Functionally, knockdown of circSCAPER attenuated IL-1β-evoked apoptosis, ECM degradation, inflammation and oxidative stress in vitro. CircSCAPER up-regulation in OA cartilages was discovered to be accompanied by decreased miR-127-5p and increased TLR4. Mechanistically, circSCAPER acted as a sponge for miR-127-5p to positively regulate TLR4 expression in chondrocytes. IL-1β treatment reduced miR-127-5p expression but up-regulated TLR4 expression, re-expression of miR-127-5p suppressed IL-1β-caused chondrocyte injury, which was abolished by TLR4 overexpression. Moreover, miR-127-5p inhibition reversed the protective action of circSCAPER knockdown on chondrocytes under IL-1β treatment.</p><p><strong>Conclusion: </strong>CircSCAPER silencing protected against IL-1β-induced apoptosis, ECM degradation, inflammation and oxidative stress in chondrocytes via miR-127-5p/TLR4 axis.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08916934.2022.2103798\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08916934.2022.2103798","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
CircSCAPER knockdown attenuates IL-1β-induced chondrocyte injury by miR-127-5p/TLR4 axis in osteoarthritis.
Purpose: Osteoarthritis (OA) is a chronic inflammatory degenerative disease characterized by articular cartilage degradation. Circular RNAs have been shown to play significant roles in OA process. Herein, this work aimed to investigate the potential role and mechanism of circSCAPER in OA progression.
Methods: Levels of circSCAPER, miR-127-5p and toll-like receptor 4 (TLR4) were detected by qRT-PCR or western blotting. Cell apoptosis was determined by flow cytometry. The expression of Aggrecan and Matrix metallopeptidase was examined using western blot to assess extracellular matrix (ECM) degradation. Inflammatory response and oxidative stress were determined by measuring the release of inflammatory factors, along with the generation of intracellular reactive oxygen species and malondialdehyde. The interaction between miR-127-5p and circSCAPER or TLR4 was determined by dual-luciferase reporter, RNA immunoprecipitation and pull-down assays.
Results: Chondrocytes were treated with interleukin-1β (IL-1β) to mimic OA condition in vitro. CircSCAPER was increased in OA cartilages and IL-1β-induced chondrocytes. Functionally, knockdown of circSCAPER attenuated IL-1β-evoked apoptosis, ECM degradation, inflammation and oxidative stress in vitro. CircSCAPER up-regulation in OA cartilages was discovered to be accompanied by decreased miR-127-5p and increased TLR4. Mechanistically, circSCAPER acted as a sponge for miR-127-5p to positively regulate TLR4 expression in chondrocytes. IL-1β treatment reduced miR-127-5p expression but up-regulated TLR4 expression, re-expression of miR-127-5p suppressed IL-1β-caused chondrocyte injury, which was abolished by TLR4 overexpression. Moreover, miR-127-5p inhibition reversed the protective action of circSCAPER knockdown on chondrocytes under IL-1β treatment.
Conclusion: CircSCAPER silencing protected against IL-1β-induced apoptosis, ECM degradation, inflammation and oxidative stress in chondrocytes via miR-127-5p/TLR4 axis.