BioAlign:一个精确的全局PPI网络对齐算法。

Evolutionary Bioinformatics Online Pub Date : 2022-07-20 eCollection Date: 2022-01-01 DOI:10.1177/11769343221110658
Umair Ayub, Hammad Naveed
{"title":"BioAlign:一个精确的全局PPI网络对齐算法。","authors":"Umair Ayub,&nbsp;Hammad Naveed","doi":"10.1177/11769343221110658","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The advancement of high-throughput PPI profiling techniques results in generating a large amount of PPI data. The alignment of the PPI networks uncovers the relationship between the species that can help understand the biological systems. The comparative study reveals the conserved biological interactions of the proteins across the species. It can also help study the biological pathways and signal networks of the cells. Although several network alignment algorithms are developed to study and compare the PPI data, the development of the aligner that aligns the PPI networks with high biological similarity and coverage is still challenging.</p><p><strong>Results: </strong>This paper presents a novel global network alignment algorithm, BioAlign, that incorporates a significant amount of biological information. Existing studies use global sequence and/or 3D-structure similarity to align the PPI networks. In contrast, BioAlign uses the local sequence similarity, predicted secondary structure motifs, and remote homology in addition to global sequence and 3D-structure similarity. The extra sources of biological information help BioAlign to align the proteins with high biological similarity. BioAlign produces significantly better results in terms of AFS and Coverage (6-32 and 7-34 with respect to MF and BP, respectively) than the existing algorithms. BioAlign aligns a much larger number of proteins that have high biological similarities as compared to the existing aligners. BioAlign helps in studying the functionally similar protein pairs across the species.</p>","PeriodicalId":136690,"journal":{"name":"Evolutionary Bioinformatics Online","volume":" ","pages":"11769343221110658"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/3e/10.1177_11769343221110658.PMC9309777.pdf","citationCount":"1","resultStr":"{\"title\":\"BioAlign: An Accurate Global PPI Network Alignment Algorithm.\",\"authors\":\"Umair Ayub,&nbsp;Hammad Naveed\",\"doi\":\"10.1177/11769343221110658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>The advancement of high-throughput PPI profiling techniques results in generating a large amount of PPI data. The alignment of the PPI networks uncovers the relationship between the species that can help understand the biological systems. The comparative study reveals the conserved biological interactions of the proteins across the species. It can also help study the biological pathways and signal networks of the cells. Although several network alignment algorithms are developed to study and compare the PPI data, the development of the aligner that aligns the PPI networks with high biological similarity and coverage is still challenging.</p><p><strong>Results: </strong>This paper presents a novel global network alignment algorithm, BioAlign, that incorporates a significant amount of biological information. Existing studies use global sequence and/or 3D-structure similarity to align the PPI networks. In contrast, BioAlign uses the local sequence similarity, predicted secondary structure motifs, and remote homology in addition to global sequence and 3D-structure similarity. The extra sources of biological information help BioAlign to align the proteins with high biological similarity. BioAlign produces significantly better results in terms of AFS and Coverage (6-32 and 7-34 with respect to MF and BP, respectively) than the existing algorithms. BioAlign aligns a much larger number of proteins that have high biological similarities as compared to the existing aligners. BioAlign helps in studying the functionally similar protein pairs across the species.</p>\",\"PeriodicalId\":136690,\"journal\":{\"name\":\"Evolutionary Bioinformatics Online\",\"volume\":\" \",\"pages\":\"11769343221110658\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/3e/10.1177_11769343221110658.PMC9309777.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Bioinformatics Online\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/11769343221110658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/11769343221110658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动机:高通量PPI分析技术的进步导致产生大量PPI数据。PPI网络的排列揭示了物种之间的关系,有助于理解生物系统。比较研究揭示了蛋白质在物种间的保守的生物相互作用。它还可以帮助研究细胞的生物学途径和信号网络。尽管已经开发了几种网络对齐算法来研究和比较PPI数据,但开发具有高生物相似性和覆盖率的PPI网络对齐器仍然具有挑战性。结果:本文提出了一种新的全球网络对齐算法BioAlign,该算法包含了大量的生物信息。现有的研究使用全局序列和/或3d结构相似性来对齐PPI网络。相比之下,BioAlign除了使用全局序列和3d结构相似性外,还使用局部序列相似性、预测二级结构基序和远程同源性。额外的生物信息来源帮助BioAlign将蛋白质与高生物相似性对齐。与现有算法相比,BioAlign在AFS和Coverage(分别为MF和BP的6-32和7-34)方面产生了明显更好的结果。与现有的比对器相比,BioAlign比对了更多具有高生物学相似性的蛋白质。BioAlign有助于研究跨物种的功能相似的蛋白质对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

BioAlign: An Accurate Global PPI Network Alignment Algorithm.

BioAlign: An Accurate Global PPI Network Alignment Algorithm.

BioAlign: An Accurate Global PPI Network Alignment Algorithm.

BioAlign: An Accurate Global PPI Network Alignment Algorithm.

Motivation: The advancement of high-throughput PPI profiling techniques results in generating a large amount of PPI data. The alignment of the PPI networks uncovers the relationship between the species that can help understand the biological systems. The comparative study reveals the conserved biological interactions of the proteins across the species. It can also help study the biological pathways and signal networks of the cells. Although several network alignment algorithms are developed to study and compare the PPI data, the development of the aligner that aligns the PPI networks with high biological similarity and coverage is still challenging.

Results: This paper presents a novel global network alignment algorithm, BioAlign, that incorporates a significant amount of biological information. Existing studies use global sequence and/or 3D-structure similarity to align the PPI networks. In contrast, BioAlign uses the local sequence similarity, predicted secondary structure motifs, and remote homology in addition to global sequence and 3D-structure similarity. The extra sources of biological information help BioAlign to align the proteins with high biological similarity. BioAlign produces significantly better results in terms of AFS and Coverage (6-32 and 7-34 with respect to MF and BP, respectively) than the existing algorithms. BioAlign aligns a much larger number of proteins that have high biological similarities as compared to the existing aligners. BioAlign helps in studying the functionally similar protein pairs across the species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信