Seyedeh Yalda Raeisi Sadati, Sodabeh Jahanbakhsh Godehkahriz, Ali Ebadi, Mohammad Sedghi
{"title":"氧化锌纳米颗粒通过生理生化变化和胁迫基因表达增强小麦抗旱性","authors":"Seyedeh Yalda Raeisi Sadati, Sodabeh Jahanbakhsh Godehkahriz, Ali Ebadi, Mohammad Sedghi","doi":"10.30498/ijb.2021.280711.3027","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study was performed to investigate the expression analysis of genes involved in drought tolerance and the use of zinc oxide nanoparticles (ZnO NPs) to mitigate the undesirable effects of drought stress in wheat.</p><p><strong>Materials and methods: </strong>A factorial experiment based on completely randomized design (CRD) was performed with three replicates. The experiment was carried out in the greenhouse of Mohaghegh Ardabili University, Ardabil, Iran in 2017. The factorial combination of stress levels of water supply (including 85%, 60%, and 35% field capacity) and ZnO NPs (0, 0.5, and 1.0 g. L<sup>-1</sup>) were used on three wheat cultivars (Mihan, Heidari, and Gascogne). Three days after spraying the ZnO NPs in the three-leaf stage, drought stress was applied for ten days and physio-biochemical traits and gene expression of wheat cultivars were investigated. The expression of <i>Wdhn13</i>, <i>DREB2</i>, <i>P5CS</i>, and <i>CAT1</i> genes in leaves were analyzed by real-time polymerase chain reaction (PCR).</p><p><strong>Results: </strong>Generally, drought stress significantly enhanced total protein and lysine, soluble sugars, chlorophyll, carotenoid contents, antioxidant enzymes activities, and proline accumulation in plants treated with ZnO NPs. Moreover, the ZnO NPs increased the expression of the genes involved in proline biosynthesis (i.e., <i>P5CS</i>), catalase activity (i.e., <i>CAT1</i>), and dehydration-responsive genes <i>DREB2</i> and <i>Wdhn13</i>, which are known as drought-tolerance parameters.</p><p><strong>Conclusions: </strong>According to our results, ZnO NP-treated wheat induced drought-tolerance genes and effectively facilitated deficiency tolerance. Therefore, under drought stress, we recommend spraying bread wheat with ZnO NPs (1 g. L<sup>-1</sup>) in the growing season, which can improve wheat grain yield under dry conditions.</p>","PeriodicalId":14492,"journal":{"name":"Iranian Journal of Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/68/IJB-20-e3027.PMC9284241.pdf","citationCount":"13","resultStr":"{\"title\":\"Zinc Oxide Nanoparticles Enhance Drought Tolerance in Wheat via Physio-Biochemical Changes and Stress Genes Expression.\",\"authors\":\"Seyedeh Yalda Raeisi Sadati, Sodabeh Jahanbakhsh Godehkahriz, Ali Ebadi, Mohammad Sedghi\",\"doi\":\"10.30498/ijb.2021.280711.3027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study was performed to investigate the expression analysis of genes involved in drought tolerance and the use of zinc oxide nanoparticles (ZnO NPs) to mitigate the undesirable effects of drought stress in wheat.</p><p><strong>Materials and methods: </strong>A factorial experiment based on completely randomized design (CRD) was performed with three replicates. The experiment was carried out in the greenhouse of Mohaghegh Ardabili University, Ardabil, Iran in 2017. The factorial combination of stress levels of water supply (including 85%, 60%, and 35% field capacity) and ZnO NPs (0, 0.5, and 1.0 g. L<sup>-1</sup>) were used on three wheat cultivars (Mihan, Heidari, and Gascogne). Three days after spraying the ZnO NPs in the three-leaf stage, drought stress was applied for ten days and physio-biochemical traits and gene expression of wheat cultivars were investigated. The expression of <i>Wdhn13</i>, <i>DREB2</i>, <i>P5CS</i>, and <i>CAT1</i> genes in leaves were analyzed by real-time polymerase chain reaction (PCR).</p><p><strong>Results: </strong>Generally, drought stress significantly enhanced total protein and lysine, soluble sugars, chlorophyll, carotenoid contents, antioxidant enzymes activities, and proline accumulation in plants treated with ZnO NPs. Moreover, the ZnO NPs increased the expression of the genes involved in proline biosynthesis (i.e., <i>P5CS</i>), catalase activity (i.e., <i>CAT1</i>), and dehydration-responsive genes <i>DREB2</i> and <i>Wdhn13</i>, which are known as drought-tolerance parameters.</p><p><strong>Conclusions: </strong>According to our results, ZnO NP-treated wheat induced drought-tolerance genes and effectively facilitated deficiency tolerance. Therefore, under drought stress, we recommend spraying bread wheat with ZnO NPs (1 g. L<sup>-1</sup>) in the growing season, which can improve wheat grain yield under dry conditions.</p>\",\"PeriodicalId\":14492,\"journal\":{\"name\":\"Iranian Journal of Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/68/IJB-20-e3027.PMC9284241.pdf\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30498/ijb.2021.280711.3027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30498/ijb.2021.280711.3027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Zinc Oxide Nanoparticles Enhance Drought Tolerance in Wheat via Physio-Biochemical Changes and Stress Genes Expression.
Objectives: This study was performed to investigate the expression analysis of genes involved in drought tolerance and the use of zinc oxide nanoparticles (ZnO NPs) to mitigate the undesirable effects of drought stress in wheat.
Materials and methods: A factorial experiment based on completely randomized design (CRD) was performed with three replicates. The experiment was carried out in the greenhouse of Mohaghegh Ardabili University, Ardabil, Iran in 2017. The factorial combination of stress levels of water supply (including 85%, 60%, and 35% field capacity) and ZnO NPs (0, 0.5, and 1.0 g. L-1) were used on three wheat cultivars (Mihan, Heidari, and Gascogne). Three days after spraying the ZnO NPs in the three-leaf stage, drought stress was applied for ten days and physio-biochemical traits and gene expression of wheat cultivars were investigated. The expression of Wdhn13, DREB2, P5CS, and CAT1 genes in leaves were analyzed by real-time polymerase chain reaction (PCR).
Results: Generally, drought stress significantly enhanced total protein and lysine, soluble sugars, chlorophyll, carotenoid contents, antioxidant enzymes activities, and proline accumulation in plants treated with ZnO NPs. Moreover, the ZnO NPs increased the expression of the genes involved in proline biosynthesis (i.e., P5CS), catalase activity (i.e., CAT1), and dehydration-responsive genes DREB2 and Wdhn13, which are known as drought-tolerance parameters.
Conclusions: According to our results, ZnO NP-treated wheat induced drought-tolerance genes and effectively facilitated deficiency tolerance. Therefore, under drought stress, we recommend spraying bread wheat with ZnO NPs (1 g. L-1) in the growing season, which can improve wheat grain yield under dry conditions.
期刊介绍:
Iranian Journal of Biotechnology (IJB) is published quarterly by the National Institute of Genetic Engineering and Biotechnology. IJB publishes original scientific research papers in the broad area of Biotechnology such as, Agriculture, Animal and Marine Sciences, Basic Sciences, Bioinformatics, Biosafety and Bioethics, Environment, Industry and Mining and Medical Sciences.