Tatsuro Ito, Kenneth R Sims, Yuan Liu, Zhenting Xiang, Rodrigo A Arthur, Anderson T Hara, Hyun Koo, Danielle S W Benoit, Marlise I Klein
{"title":"通过聚合物纳米颗粒载体递送法尼醇可抑制致龋跨王国生物膜并防止牙釉质脱矿。","authors":"Tatsuro Ito, Kenneth R Sims, Yuan Liu, Zhenting Xiang, Rodrigo A Arthur, Anderson T Hara, Hyun Koo, Danielle S W Benoit, Marlise I Klein","doi":"10.1111/omi.12379","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus mutans and Candida albicans are frequently detected together in the plaque from patients with early childhood caries (ECC) and synergistically interact to form a cariogenic cross-kingdom biofilm. However, this biofilm is difficult to control. Thus, to achieve maximal efficacy within the complex biofilm microenvironment, nanoparticle carriers have shown increased interest in treating oral biofilms in recent years. Here, we assessed the anti-biofilm efficacy of farnesol (Far), a hydrophobic antibacterial drug and repressor of Candida filamentous forms, against cross-kingdom biofilms employing drug delivery via polymeric nanoparticle carriers (NPCs). We also evaluated the effect of the strategy on teeth enamel demineralization. The farnesol-loaded NPCs (NPC+Far) resulted in a 2-log CFU/mL reduction of S. mutans and C. albicans (hydroxyapatite disc biofilm model). High-resolution confocal images further confirmed a significant reduction in exopolysaccharides, smaller microcolonies of S. mutans, and no hyphal form of C. albicans after treatment with NPC+Far on human tooth enamel (HT) slabs, altering the biofilm 3D structure. Furthermore, NPC+Far treatment was highly effective in preventing enamel demineralization on HT, reducing lesion depth (79% reduction) and mineral loss (85% reduction) versus vehicle PBS-treated HT, while NPC or Far alone had no differences with the PBS. The drug delivery via polymeric NPCs has the potential for targeting bacterial-fungal biofilms associated with a prevalent and costly pediatric oral disease, such as ECC.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529802/pdf/nihms-1825297.pdf","citationCount":"1","resultStr":"{\"title\":\"Farnesol delivery via polymeric nanoparticle carriers inhibits cariogenic cross-kingdom biofilms and prevents enamel demineralization.\",\"authors\":\"Tatsuro Ito, Kenneth R Sims, Yuan Liu, Zhenting Xiang, Rodrigo A Arthur, Anderson T Hara, Hyun Koo, Danielle S W Benoit, Marlise I Klein\",\"doi\":\"10.1111/omi.12379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Streptococcus mutans and Candida albicans are frequently detected together in the plaque from patients with early childhood caries (ECC) and synergistically interact to form a cariogenic cross-kingdom biofilm. However, this biofilm is difficult to control. Thus, to achieve maximal efficacy within the complex biofilm microenvironment, nanoparticle carriers have shown increased interest in treating oral biofilms in recent years. Here, we assessed the anti-biofilm efficacy of farnesol (Far), a hydrophobic antibacterial drug and repressor of Candida filamentous forms, against cross-kingdom biofilms employing drug delivery via polymeric nanoparticle carriers (NPCs). We also evaluated the effect of the strategy on teeth enamel demineralization. The farnesol-loaded NPCs (NPC+Far) resulted in a 2-log CFU/mL reduction of S. mutans and C. albicans (hydroxyapatite disc biofilm model). High-resolution confocal images further confirmed a significant reduction in exopolysaccharides, smaller microcolonies of S. mutans, and no hyphal form of C. albicans after treatment with NPC+Far on human tooth enamel (HT) slabs, altering the biofilm 3D structure. Furthermore, NPC+Far treatment was highly effective in preventing enamel demineralization on HT, reducing lesion depth (79% reduction) and mineral loss (85% reduction) versus vehicle PBS-treated HT, while NPC or Far alone had no differences with the PBS. The drug delivery via polymeric NPCs has the potential for targeting bacterial-fungal biofilms associated with a prevalent and costly pediatric oral disease, such as ECC.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529802/pdf/nihms-1825297.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12379\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12379","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Farnesol delivery via polymeric nanoparticle carriers inhibits cariogenic cross-kingdom biofilms and prevents enamel demineralization.
Streptococcus mutans and Candida albicans are frequently detected together in the plaque from patients with early childhood caries (ECC) and synergistically interact to form a cariogenic cross-kingdom biofilm. However, this biofilm is difficult to control. Thus, to achieve maximal efficacy within the complex biofilm microenvironment, nanoparticle carriers have shown increased interest in treating oral biofilms in recent years. Here, we assessed the anti-biofilm efficacy of farnesol (Far), a hydrophobic antibacterial drug and repressor of Candida filamentous forms, against cross-kingdom biofilms employing drug delivery via polymeric nanoparticle carriers (NPCs). We also evaluated the effect of the strategy on teeth enamel demineralization. The farnesol-loaded NPCs (NPC+Far) resulted in a 2-log CFU/mL reduction of S. mutans and C. albicans (hydroxyapatite disc biofilm model). High-resolution confocal images further confirmed a significant reduction in exopolysaccharides, smaller microcolonies of S. mutans, and no hyphal form of C. albicans after treatment with NPC+Far on human tooth enamel (HT) slabs, altering the biofilm 3D structure. Furthermore, NPC+Far treatment was highly effective in preventing enamel demineralization on HT, reducing lesion depth (79% reduction) and mineral loss (85% reduction) versus vehicle PBS-treated HT, while NPC or Far alone had no differences with the PBS. The drug delivery via polymeric NPCs has the potential for targeting bacterial-fungal biofilms associated with a prevalent and costly pediatric oral disease, such as ECC.
期刊介绍:
Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections.
Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal.
The journal does not publish Short Communications or Letters to the Editor.
Molecular Oral Microbiology is published bimonthly.