强迫公理和非定常理想的复杂性。

Pub Date : 2022-01-01 Epub Date: 2022-06-27 DOI:10.1007/s00605-022-01734-w
Sean Cox, Philipp Lücke
{"title":"强迫公理和非定常理想的复杂性。","authors":"Sean Cox,&nbsp;Philipp Lücke","doi":"10.1007/s00605-022-01734-w","DOIUrl":null,"url":null,"abstract":"<p><p>We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and its restrictions to certain cofinalities. Our main result shows that the strengthening <math> <msup><mrow><mi>MM</mi></mrow> <mrow><mo>+</mo> <mo>+</mo></mrow> </msup> </math> of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> to sets of ordinals of countable cofinality is <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definable by formulas with parameters in <math><mrow><mi>H</mi> <mo>(</mo> <msub><mi>ω</mi> <mn>3</mn></msub> <mo>)</mo></mrow> </math> . The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and strong forcing axioms that are compatible with <math><mi>CH</mi></math> . Finally, we answer a question of S. Friedman, Wu and Zdomskyy by showing that the <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definability of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> is compatible with arbitrary large values of the continuum function at <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> .</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forcing axioms and the complexity of non-stationary ideals.\",\"authors\":\"Sean Cox,&nbsp;Philipp Lücke\",\"doi\":\"10.1007/s00605-022-01734-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and its restrictions to certain cofinalities. Our main result shows that the strengthening <math> <msup><mrow><mi>MM</mi></mrow> <mrow><mo>+</mo> <mo>+</mo></mrow> </msup> </math> of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> to sets of ordinals of countable cofinality is <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definable by formulas with parameters in <math><mrow><mi>H</mi> <mo>(</mo> <msub><mi>ω</mi> <mn>3</mn></msub> <mo>)</mo></mrow> </math> . The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and strong forcing axioms that are compatible with <math><mi>CH</mi></math> . Finally, we answer a question of S. Friedman, Wu and Zdomskyy by showing that the <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definability of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> is compatible with arbitrary large values of the continuum function at <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> .</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-022-01734-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-022-01734-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了强强迫公理对ω 2上非平稳理想的复杂性的影响及其对某些伴随性的限制。我们的主要结果表明,马丁极大值的增强并不能决定ω 2上的非平稳理想对可数共度序数集的约束是否为Δ 1 -可由H (ω 3)中的参数公式定义。在证明这一结果中发展的技术也使我们能够证明与CH兼容的ω 2上的完全非平稳理想和强强迫公理的类似结果。最后,我们回答了S. Friedman, Wu和zdomsky的一个问题,证明了ω 2上的非平稳理想的Δ 1 -可定义性与ω 2上任意大的连续统函数相容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Forcing axioms and the complexity of non-stationary ideals.

We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on ω 2 and its restrictions to certain cofinalities. Our main result shows that the strengthening MM + + of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on ω 2 to sets of ordinals of countable cofinality is Δ 1 -definable by formulas with parameters in H ( ω 3 ) . The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on ω 2 and strong forcing axioms that are compatible with CH . Finally, we answer a question of S. Friedman, Wu and Zdomskyy by showing that the Δ 1 -definability of the non-stationary ideal on ω 2 is compatible with arbitrary large values of the continuum function at ω 2 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信