{"title":"强迫公理和非定常理想的复杂性。","authors":"Sean Cox, Philipp Lücke","doi":"10.1007/s00605-022-01734-w","DOIUrl":null,"url":null,"abstract":"<p><p>We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and its restrictions to certain cofinalities. Our main result shows that the strengthening <math> <msup><mrow><mi>MM</mi></mrow> <mrow><mo>+</mo> <mo>+</mo></mrow> </msup> </math> of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> to sets of ordinals of countable cofinality is <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definable by formulas with parameters in <math><mrow><mi>H</mi> <mo>(</mo> <msub><mi>ω</mi> <mn>3</mn></msub> <mo>)</mo></mrow> </math> . The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and strong forcing axioms that are compatible with <math><mi>CH</mi></math> . Finally, we answer a question of S. Friedman, Wu and Zdomskyy by showing that the <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definability of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> is compatible with arbitrary large values of the continuum function at <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> .</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forcing axioms and the complexity of non-stationary ideals.\",\"authors\":\"Sean Cox, Philipp Lücke\",\"doi\":\"10.1007/s00605-022-01734-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and its restrictions to certain cofinalities. Our main result shows that the strengthening <math> <msup><mrow><mi>MM</mi></mrow> <mrow><mo>+</mo> <mo>+</mo></mrow> </msup> </math> of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> to sets of ordinals of countable cofinality is <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definable by formulas with parameters in <math><mrow><mi>H</mi> <mo>(</mo> <msub><mi>ω</mi> <mn>3</mn></msub> <mo>)</mo></mrow> </math> . The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> and strong forcing axioms that are compatible with <math><mi>CH</mi></math> . Finally, we answer a question of S. Friedman, Wu and Zdomskyy by showing that the <math><msub><mi>Δ</mi> <mn>1</mn></msub> </math> -definability of the non-stationary ideal on <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> is compatible with arbitrary large values of the continuum function at <math><msub><mi>ω</mi> <mn>2</mn></msub> </math> .</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-022-01734-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-022-01734-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Forcing axioms and the complexity of non-stationary ideals.
We study the influence of strong forcing axioms on the complexity of the non-stationary ideal on and its restrictions to certain cofinalities. Our main result shows that the strengthening of Martin's Maximum does not decide whether the restriction of the non-stationary ideal on to sets of ordinals of countable cofinality is -definable by formulas with parameters in . The techniques developed in the proof of this result also allow us to prove analogous results for the full non-stationary ideal on and strong forcing axioms that are compatible with . Finally, we answer a question of S. Friedman, Wu and Zdomskyy by showing that the -definability of the non-stationary ideal on is compatible with arbitrary large values of the continuum function at .