Shunafrica White, Matthew B A McCullough, Paul M Akangah
{"title":"糖尿病对软组织的结构性影响:系统综述。","authors":"Shunafrica White, Matthew B A McCullough, Paul M Akangah","doi":"10.1615/CritRevBiomedEng.2022043200","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperglycemia, which is associated with diabetes, increases the production of advanced glycation end products. Advanced glycation end products lead to the structural degradation of soft tissues. The structural degradation of diabetic soft tissues has been investigated in humans, rodents, and canines. Therefore, the objective of this review is to unify the various contributions to diabetes research through the mechanical properties and geometric characteristics of soft tissues. A systematic review was performed and identified the effects of diabetes on mechanical and geometric properties of soft tissues via experimental testing or in vivo - driven finite element analysis. The literature concludes that diabetes contributes to major structural changes in soft tissues but does not cause the same structural changes in all soft tissues (e.g., diabetic tendons are weaker and diabetic plantar tissues are tougher). Diabetes stiffens and toughens soft tissues, thus altering viscoelastic behavior (e.g., poor strain and stress response). However, diabetes management routines can prevent or minimize the effects of diabetes on the mechanical and geometric properties of soft tissues. Unification of the structural effects of diabetes on soft tissues will contribute to the pathophysiology of diabetes.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"49 6","pages":"11-27"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structural Effects of Diabetes on Soft Tissues: A Systematic Review.\",\"authors\":\"Shunafrica White, Matthew B A McCullough, Paul M Akangah\",\"doi\":\"10.1615/CritRevBiomedEng.2022043200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperglycemia, which is associated with diabetes, increases the production of advanced glycation end products. Advanced glycation end products lead to the structural degradation of soft tissues. The structural degradation of diabetic soft tissues has been investigated in humans, rodents, and canines. Therefore, the objective of this review is to unify the various contributions to diabetes research through the mechanical properties and geometric characteristics of soft tissues. A systematic review was performed and identified the effects of diabetes on mechanical and geometric properties of soft tissues via experimental testing or in vivo - driven finite element analysis. The literature concludes that diabetes contributes to major structural changes in soft tissues but does not cause the same structural changes in all soft tissues (e.g., diabetic tendons are weaker and diabetic plantar tissues are tougher). Diabetes stiffens and toughens soft tissues, thus altering viscoelastic behavior (e.g., poor strain and stress response). However, diabetes management routines can prevent or minimize the effects of diabetes on the mechanical and geometric properties of soft tissues. Unification of the structural effects of diabetes on soft tissues will contribute to the pathophysiology of diabetes.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"49 6\",\"pages\":\"11-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2022043200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2022043200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
The Structural Effects of Diabetes on Soft Tissues: A Systematic Review.
Hyperglycemia, which is associated with diabetes, increases the production of advanced glycation end products. Advanced glycation end products lead to the structural degradation of soft tissues. The structural degradation of diabetic soft tissues has been investigated in humans, rodents, and canines. Therefore, the objective of this review is to unify the various contributions to diabetes research through the mechanical properties and geometric characteristics of soft tissues. A systematic review was performed and identified the effects of diabetes on mechanical and geometric properties of soft tissues via experimental testing or in vivo - driven finite element analysis. The literature concludes that diabetes contributes to major structural changes in soft tissues but does not cause the same structural changes in all soft tissues (e.g., diabetic tendons are weaker and diabetic plantar tissues are tougher). Diabetes stiffens and toughens soft tissues, thus altering viscoelastic behavior (e.g., poor strain and stress response). However, diabetes management routines can prevent or minimize the effects of diabetes on the mechanical and geometric properties of soft tissues. Unification of the structural effects of diabetes on soft tissues will contribute to the pathophysiology of diabetes.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.