非线性问题的深里兹方法的一致收敛保证。

IF 2.3 Q1 MATHEMATICS
Patrick Dondl, Johannes Müller, Marius Zeinhofer
{"title":"非线性问题的深里兹方法的一致收敛保证。","authors":"Patrick Dondl,&nbsp;Johannes Müller,&nbsp;Marius Zeinhofer","doi":"10.1186/s13662-022-03722-8","DOIUrl":null,"url":null,"abstract":"<p><p>We provide convergence guarantees for the Deep Ritz Method for abstract variational energies. Our results cover nonlinear variational problems such as the <i>p</i>-Laplace equation or the Modica-Mortola energy with essential or natural boundary conditions. Under additional assumptions, we show that the convergence is uniform across bounded families of right-hand sides.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287260/pdf/","citationCount":"7","resultStr":"{\"title\":\"Uniform convergence guarantees for the deep Ritz method for nonlinear problems.\",\"authors\":\"Patrick Dondl,&nbsp;Johannes Müller,&nbsp;Marius Zeinhofer\",\"doi\":\"10.1186/s13662-022-03722-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We provide convergence guarantees for the Deep Ritz Method for abstract variational energies. Our results cover nonlinear variational problems such as the <i>p</i>-Laplace equation or the Modica-Mortola energy with essential or natural boundary conditions. Under additional assumptions, we show that the convergence is uniform across bounded families of right-hand sides.</p>\",\"PeriodicalId\":72091,\"journal\":{\"name\":\"Advances in continuous and discrete models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287260/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in continuous and discrete models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-022-03722-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13662-022-03722-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们提供了抽象变分能量的深里兹方法的收敛性保证。我们的结果涵盖了非线性变分问题,如p-拉普拉斯方程或具有本质或自然边界条件的Modica-Mortola能量。在附加的假设下,我们证明了收敛性在右边有界族上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uniform convergence guarantees for the deep Ritz method for nonlinear problems.

Uniform convergence guarantees for the deep Ritz method for nonlinear problems.

Uniform convergence guarantees for the deep Ritz method for nonlinear problems.

We provide convergence guarantees for the Deep Ritz Method for abstract variational energies. Our results cover nonlinear variational problems such as the p-Laplace equation or the Modica-Mortola energy with essential or natural boundary conditions. Under additional assumptions, we show that the convergence is uniform across bounded families of right-hand sides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信