Ziyue Mi, Li Gong, Yujie Kong, Peizhe Zhao, Yonghua Yin, Haixia Xu, Li Tian, Zhong Liu
{"title":"新鲜和衰老单采血小板浓缩物中外泌体微小rna的差异表达。","authors":"Ziyue Mi, Li Gong, Yujie Kong, Peizhe Zhao, Yonghua Yin, Haixia Xu, Li Tian, Zhong Liu","doi":"10.1080/09537104.2022.2108541","DOIUrl":null,"url":null,"abstract":"<p><p>Patients have a high risk of suffering adverse reactions after receiving platelet products stored for 5 days. Bioactive exosomes in platelet products can be accumulated during storage, which is associated with adverse reactions. MicroRNAs are one of the critical cargoes in exosomes, which participate in cell differentiation, metabolism, and immunomodulation. This study intends to elucidate and analyze the differential expression of exosomal microRNAs in apheresis platelet concentrates during storage and predict the potential functions of target genes. Apheresis platelet concentrates were used to isolate exosomes by ultracentrifugation. Exosomes were phenotyped by western blot, transmission electron microscopy, and nano flow cytometry. The differential expression of the exosomal microRNAs was obtained by a microarray test using four bags of apheresis platelets stored for 5 days compared with 1 day. The differentially expressed microRNAs between the two time points were identified, and their target genes were analyzed by miRWalk and miRDB. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the target genes' functions. Fifteen bags of apheresis platelet concentrates stored for 1 day and 5 days were used to verify the microarray results by quantitative reverse transcription-polymerase chain reactions (qRT-PCR). There were 134 microRNAs in total expressed differently in the two groups (day 1 and day 5), with 57 microRNAs up-regulated and 77 down-regulated (|fold change| > 2.0 and <i>P</i> < .05). Thirteen up-regulated microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c, hsa-miR-342-3p, hsa-miR-320d, hsa-miR-328-3p, and hsa-miR-320e) detected in all samples were selected to validate the results. The qRT-PCR results showed that five (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, and hsa-miR-320b) of them were increased more than 10-fold (<i>P</i> < .001); four (hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c) more than five-fold (<i>P</i> < .001); two (hsa-miR-342-3p and hsa-miR-320d) more than two-fold (<i>P</i> < .05); and two (hsa-miR-328-3p and hsa-miR-320e) more than two-fold (<i>P</i> > .05). Specifically, hsa-miR-22-3p increased 14.6-fold; hsa-miR-223-3p increased 13.0-fold; and hsa-miR-21-5p increased 12.0-fold. Based on bioinformatics functional analysis, target genes of top nine microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, and hsa-miR-320c) were annotated with positive regulation of cell proliferation and nervous system development, and mainly enriched in regulating pluripotency of stem cells signaling pathway, prolactin signaling pathway, and FoxO signaling pathway, etc. The prolactin, FoxO, ErbB, and TNF signaling pathway were relevant to immunomodulation. In particular, hsa-miR-22-3p expression was the most different during storage, with a fold change of 14.6, which might be a key mediator.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential expression of exosomal microRNAs in fresh and senescent apheresis platelet concentrates.\",\"authors\":\"Ziyue Mi, Li Gong, Yujie Kong, Peizhe Zhao, Yonghua Yin, Haixia Xu, Li Tian, Zhong Liu\",\"doi\":\"10.1080/09537104.2022.2108541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients have a high risk of suffering adverse reactions after receiving platelet products stored for 5 days. Bioactive exosomes in platelet products can be accumulated during storage, which is associated with adverse reactions. MicroRNAs are one of the critical cargoes in exosomes, which participate in cell differentiation, metabolism, and immunomodulation. This study intends to elucidate and analyze the differential expression of exosomal microRNAs in apheresis platelet concentrates during storage and predict the potential functions of target genes. Apheresis platelet concentrates were used to isolate exosomes by ultracentrifugation. Exosomes were phenotyped by western blot, transmission electron microscopy, and nano flow cytometry. The differential expression of the exosomal microRNAs was obtained by a microarray test using four bags of apheresis platelets stored for 5 days compared with 1 day. The differentially expressed microRNAs between the two time points were identified, and their target genes were analyzed by miRWalk and miRDB. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the target genes' functions. Fifteen bags of apheresis platelet concentrates stored for 1 day and 5 days were used to verify the microarray results by quantitative reverse transcription-polymerase chain reactions (qRT-PCR). There were 134 microRNAs in total expressed differently in the two groups (day 1 and day 5), with 57 microRNAs up-regulated and 77 down-regulated (|fold change| > 2.0 and <i>P</i> < .05). Thirteen up-regulated microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c, hsa-miR-342-3p, hsa-miR-320d, hsa-miR-328-3p, and hsa-miR-320e) detected in all samples were selected to validate the results. The qRT-PCR results showed that five (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, and hsa-miR-320b) of them were increased more than 10-fold (<i>P</i> < .001); four (hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c) more than five-fold (<i>P</i> < .001); two (hsa-miR-342-3p and hsa-miR-320d) more than two-fold (<i>P</i> < .05); and two (hsa-miR-328-3p and hsa-miR-320e) more than two-fold (<i>P</i> > .05). Specifically, hsa-miR-22-3p increased 14.6-fold; hsa-miR-223-3p increased 13.0-fold; and hsa-miR-21-5p increased 12.0-fold. Based on bioinformatics functional analysis, target genes of top nine microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, and hsa-miR-320c) were annotated with positive regulation of cell proliferation and nervous system development, and mainly enriched in regulating pluripotency of stem cells signaling pathway, prolactin signaling pathway, and FoxO signaling pathway, etc. The prolactin, FoxO, ErbB, and TNF signaling pathway were relevant to immunomodulation. In particular, hsa-miR-22-3p expression was the most different during storage, with a fold change of 14.6, which might be a key mediator.</p>\",\"PeriodicalId\":20268,\"journal\":{\"name\":\"Platelets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Platelets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09537104.2022.2108541\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2022.2108541","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
患者在接受储存5天的血小板产品后发生不良反应的风险很高。血小板产物中的生物活性外泌体可在储存过程中积累,这与不良反应有关。microrna是外泌体的重要载体之一,参与细胞分化、代谢和免疫调节。本研究旨在阐明和分析单采血小板浓缩物储存过程中外泌体microRNAs的差异表达,并预测靶基因的潜在功能。采用单采血小板浓缩液超离心分离外泌体。外泌体通过western blot、透射电镜和纳米流式细胞术进行表型分析。外泌体microRNAs的差异表达通过微阵列测试获得,使用4袋单采血小板储存5天与1天。鉴定两个时间点差异表达的microrna,并通过miRWalk和miRDB分析其靶基因。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)分析来预测目标基因的功能。分别保存1天和5天的15袋单采血小板浓缩液,用定量逆转录聚合酶链反应(qRT-PCR)验证微阵列结果。两组(第1天和第5天)共有134个microrna表达差异,其中上调57个,下调77个(|fold change| > 2.0, P P P P P > 0.05)。具体来说,hsa-miR-22-3p增加14.6倍;hsa-miR-223-3p增加13.0倍;hsa-miR-21-5p升高12.0倍。基于生物信息学功能分析,前9位microrna靶基因(hsa-miR-22-3p、hsa-miR-223-3p、hsa-miR-21-5p、hsa-miR-23a-3p、hsa-miR-320b、hsa-let-7a-5p、hsa-miR-25-3p、hsa-miR-126-3p、hsa-miR-320c)被注释为正向调控细胞增殖和神经系统发育,主要富集调控干细胞信号通路、泌乳素信号通路、FoxO信号通路等多能性。催乳素、FoxO、ErbB和TNF信号通路与免疫调节有关。尤其是贮藏期间,hsa-miR-22-3p的表达差异最大,变化了14.6倍,这可能是一个关键的中介。
Differential expression of exosomal microRNAs in fresh and senescent apheresis platelet concentrates.
Patients have a high risk of suffering adverse reactions after receiving platelet products stored for 5 days. Bioactive exosomes in platelet products can be accumulated during storage, which is associated with adverse reactions. MicroRNAs are one of the critical cargoes in exosomes, which participate in cell differentiation, metabolism, and immunomodulation. This study intends to elucidate and analyze the differential expression of exosomal microRNAs in apheresis platelet concentrates during storage and predict the potential functions of target genes. Apheresis platelet concentrates were used to isolate exosomes by ultracentrifugation. Exosomes were phenotyped by western blot, transmission electron microscopy, and nano flow cytometry. The differential expression of the exosomal microRNAs was obtained by a microarray test using four bags of apheresis platelets stored for 5 days compared with 1 day. The differentially expressed microRNAs between the two time points were identified, and their target genes were analyzed by miRWalk and miRDB. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the target genes' functions. Fifteen bags of apheresis platelet concentrates stored for 1 day and 5 days were used to verify the microarray results by quantitative reverse transcription-polymerase chain reactions (qRT-PCR). There were 134 microRNAs in total expressed differently in the two groups (day 1 and day 5), with 57 microRNAs up-regulated and 77 down-regulated (|fold change| > 2.0 and P < .05). Thirteen up-regulated microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c, hsa-miR-342-3p, hsa-miR-320d, hsa-miR-328-3p, and hsa-miR-320e) detected in all samples were selected to validate the results. The qRT-PCR results showed that five (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, and hsa-miR-320b) of them were increased more than 10-fold (P < .001); four (hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, hsa-miR-320c) more than five-fold (P < .001); two (hsa-miR-342-3p and hsa-miR-320d) more than two-fold (P < .05); and two (hsa-miR-328-3p and hsa-miR-320e) more than two-fold (P > .05). Specifically, hsa-miR-22-3p increased 14.6-fold; hsa-miR-223-3p increased 13.0-fold; and hsa-miR-21-5p increased 12.0-fold. Based on bioinformatics functional analysis, target genes of top nine microRNAs (hsa-miR-22-3p, hsa-miR-223-3p, hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-320b, hsa-let-7a-5p, hsa-miR-25-3p, hsa-miR-126-3p, and hsa-miR-320c) were annotated with positive regulation of cell proliferation and nervous system development, and mainly enriched in regulating pluripotency of stem cells signaling pathway, prolactin signaling pathway, and FoxO signaling pathway, etc. The prolactin, FoxO, ErbB, and TNF signaling pathway were relevant to immunomodulation. In particular, hsa-miR-22-3p expression was the most different during storage, with a fold change of 14.6, which might be a key mediator.
期刊介绍:
Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research.
Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods.
Research areas include:
Platelet function
Biochemistry
Signal transduction
Pharmacology and therapeutics
Interaction with other cells in the blood vessel wall
The contribution of platelets and platelet-derived products to health and disease
The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor.
Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.