{"title":"使用网络指标分类与印度Rasas相关的振荡脑活动。","authors":"Pankaj Pandey, Richa Tripathi, Krishna Prasad Miyapuram","doi":"10.1186/s40708-022-00163-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neural signatures for the western classification of emotions have been widely discussed in the literature. The ancient Indian treatise on performing arts known as Natyashastra categorizes emotions into nine classes, known as Rasas. Rasa-as opposed to a pure emotion-is defined as a superposition of certain transitory, dominant, and temperamental emotional states. Although Rasas have been widely discussed in the text, dedicated brain imaging studies have not been conducted in their research. Our study examines the neural oscillations, recorded through electroencephalography (EEG) imaging, that are elicited while experiencing emotional states corresponding to Rasas. We identify differences among them using network-based functional connectivity metrics in five different frequency bands. Further, Random Forest models are trained on the extracted network features, and we present our findings based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maximum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out of nine Rasas, Sringaram (love), Bibhatsam (odious), and Bhayanakam (terror) were distinguishable from other Rasas the most across frequency bands. On the scale of most network metrics, Raudram (rage) and Sringaram are on the extremes, which also resulted in their good classification accuracy of 95%. This is reminiscent of the circumplex model where anger and contentment/happiness are on extremes on the pleasant scale. Interestingly, our results are consistent with the previous studies which highlight the significant role of higher frequency oscillations in the classification of emotions, in contrast to the alpha band that has shows non-significant differences across emotions. This research contributes to one of the first attempts to investigate the neural correlates of Rasas. Therefore, the results of this study can potentially guide the explorations into the entrainment of brain oscillations between performers and viewers, which can further lead to better performances and viewer experience.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":" ","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287523/pdf/","citationCount":"1","resultStr":"{\"title\":\"Classifying oscillatory brain activity associated with Indian Rasas using network metrics.\",\"authors\":\"Pankaj Pandey, Richa Tripathi, Krishna Prasad Miyapuram\",\"doi\":\"10.1186/s40708-022-00163-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural signatures for the western classification of emotions have been widely discussed in the literature. The ancient Indian treatise on performing arts known as Natyashastra categorizes emotions into nine classes, known as Rasas. Rasa-as opposed to a pure emotion-is defined as a superposition of certain transitory, dominant, and temperamental emotional states. Although Rasas have been widely discussed in the text, dedicated brain imaging studies have not been conducted in their research. Our study examines the neural oscillations, recorded through electroencephalography (EEG) imaging, that are elicited while experiencing emotional states corresponding to Rasas. We identify differences among them using network-based functional connectivity metrics in five different frequency bands. Further, Random Forest models are trained on the extracted network features, and we present our findings based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maximum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out of nine Rasas, Sringaram (love), Bibhatsam (odious), and Bhayanakam (terror) were distinguishable from other Rasas the most across frequency bands. On the scale of most network metrics, Raudram (rage) and Sringaram are on the extremes, which also resulted in their good classification accuracy of 95%. This is reminiscent of the circumplex model where anger and contentment/happiness are on extremes on the pleasant scale. Interestingly, our results are consistent with the previous studies which highlight the significant role of higher frequency oscillations in the classification of emotions, in contrast to the alpha band that has shows non-significant differences across emotions. This research contributes to one of the first attempts to investigate the neural correlates of Rasas. Therefore, the results of this study can potentially guide the explorations into the entrainment of brain oscillations between performers and viewers, which can further lead to better performances and viewer experience.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\" \",\"pages\":\"15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287523/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-022-00163-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00163-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Classifying oscillatory brain activity associated with Indian Rasas using network metrics.
Neural signatures for the western classification of emotions have been widely discussed in the literature. The ancient Indian treatise on performing arts known as Natyashastra categorizes emotions into nine classes, known as Rasas. Rasa-as opposed to a pure emotion-is defined as a superposition of certain transitory, dominant, and temperamental emotional states. Although Rasas have been widely discussed in the text, dedicated brain imaging studies have not been conducted in their research. Our study examines the neural oscillations, recorded through electroencephalography (EEG) imaging, that are elicited while experiencing emotional states corresponding to Rasas. We identify differences among them using network-based functional connectivity metrics in five different frequency bands. Further, Random Forest models are trained on the extracted network features, and we present our findings based on classifier predictions. We observe slow (delta) and fast brain waves (beta and gamma) exhibited the maximum discriminating features between Rasas, whereas alpha and theta bands showed fewer distinguishable pairs. Out of nine Rasas, Sringaram (love), Bibhatsam (odious), and Bhayanakam (terror) were distinguishable from other Rasas the most across frequency bands. On the scale of most network metrics, Raudram (rage) and Sringaram are on the extremes, which also resulted in their good classification accuracy of 95%. This is reminiscent of the circumplex model where anger and contentment/happiness are on extremes on the pleasant scale. Interestingly, our results are consistent with the previous studies which highlight the significant role of higher frequency oscillations in the classification of emotions, in contrast to the alpha band that has shows non-significant differences across emotions. This research contributes to one of the first attempts to investigate the neural correlates of Rasas. Therefore, the results of this study can potentially guide the explorations into the entrainment of brain oscillations between performers and viewers, which can further lead to better performances and viewer experience.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing