右美托咪定通过上调miR-140-3p和部分抑制PD-L1参与JNK-Bnip3通路失活,减轻lps刺激的肺泡II型细胞损伤。

IF 2.1 4区 医学 Q3 RESPIRATORY SYSTEM
Canadian respiratory journal Pub Date : 2022-07-31 eCollection Date: 2022-01-01 DOI:10.1155/2022/8433960
Xianfeng Chen, Juntao Hu, Jie Lai, Zhiyong Zhang, Zhanhong Tang
{"title":"右美托咪定通过上调miR-140-3p和部分抑制PD-L1参与JNK-Bnip3通路失活,减轻lps刺激的肺泡II型细胞损伤。","authors":"Xianfeng Chen,&nbsp;Juntao Hu,&nbsp;Jie Lai,&nbsp;Zhiyong Zhang,&nbsp;Zhanhong Tang","doi":"10.1155/2022/8433960","DOIUrl":null,"url":null,"abstract":"<p><p>Dexmedetomidine (DEX), which is reported to be a newly discovered, novel <i>α</i>-2 adrenoceptor agonist, is known to exhibit anti-inflammatory properties in several diseases. DEX regulates inflammation-related signaling pathways and genes through interactions with several miRNAs. This study verified that expression levels of miR-140-3p were diminished when alveolar type II cells were exposed to LPS. However, the levels of miR-140-3p were confirmed as showing an increase with DEX treatment. These observations revealed that the expression of miR-140-3p was related to the beneficial effects that accompanied the DEX treatment of LPS-induced ALI. In addition, PD-1/PD-L1 expression increased extensively when RLE-6TN cells were induced by LPS. The increased expression was reduced after treatment with DEX. Thus, it appears that the PD-L1 expression was targeted directly by miR-140-3p, resulting in the partial repression of PD-L1 levels, which involved the inhibition of p-JNK and Bnip3 expression. Therefore, DEX was shown to inhibit the PD-L1 expression by promoting partially increased miR-140-3p levels in RLE-6TN cells. DEX also inactivated the JNK-Bnip3 pathway, resulting in the inhibition of inflammation and alleviating alveolar type II cell injury.</p>","PeriodicalId":9416,"journal":{"name":"Canadian respiratory journal","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357803/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine Attenuates LPS-Stimulated Alveolar Type II Cells' Injury through Upregulation of miR-140-3p and Partial Suppression of PD-L1 Involving Inactivating JNK-Bnip3 Pathway.\",\"authors\":\"Xianfeng Chen,&nbsp;Juntao Hu,&nbsp;Jie Lai,&nbsp;Zhiyong Zhang,&nbsp;Zhanhong Tang\",\"doi\":\"10.1155/2022/8433960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dexmedetomidine (DEX), which is reported to be a newly discovered, novel <i>α</i>-2 adrenoceptor agonist, is known to exhibit anti-inflammatory properties in several diseases. DEX regulates inflammation-related signaling pathways and genes through interactions with several miRNAs. This study verified that expression levels of miR-140-3p were diminished when alveolar type II cells were exposed to LPS. However, the levels of miR-140-3p were confirmed as showing an increase with DEX treatment. These observations revealed that the expression of miR-140-3p was related to the beneficial effects that accompanied the DEX treatment of LPS-induced ALI. In addition, PD-1/PD-L1 expression increased extensively when RLE-6TN cells were induced by LPS. The increased expression was reduced after treatment with DEX. Thus, it appears that the PD-L1 expression was targeted directly by miR-140-3p, resulting in the partial repression of PD-L1 levels, which involved the inhibition of p-JNK and Bnip3 expression. Therefore, DEX was shown to inhibit the PD-L1 expression by promoting partially increased miR-140-3p levels in RLE-6TN cells. DEX also inactivated the JNK-Bnip3 pathway, resulting in the inhibition of inflammation and alleviating alveolar type II cell injury.</p>\",\"PeriodicalId\":9416,\"journal\":{\"name\":\"Canadian respiratory journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357803/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian respiratory journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8433960\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian respiratory journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/8433960","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

右美托咪定(Dexmedetomidine, DEX)是一种新发现的α-2肾上腺素能受体激动剂,在多种疾病中具有抗炎作用。DEX通过与几种mirna的相互作用调节炎症相关的信号通路和基因。本研究证实,当肺泡II型细胞暴露于LPS时,miR-140-3p的表达水平降低。然而,经证实,miR-140-3p水平在DEX治疗后呈升高趋势。这些观察结果表明,miR-140-3p的表达与DEX治疗lps诱导的ALI的有益作用有关。此外,LPS诱导RLE-6TN细胞时,PD-1/PD-L1表达量广泛增加。DEX治疗后,增加的表达量减少。因此,似乎miR-140-3p直接靶向PD-L1的表达,导致PD-L1水平的部分抑制,这涉及到抑制p-JNK和Bnip3的表达。因此,DEX通过促进RLE-6TN细胞中部分升高的miR-140-3p水平来抑制PD-L1的表达。DEX还使JNK-Bnip3通路失活,从而抑制炎症,减轻肺泡II型细胞损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dexmedetomidine Attenuates LPS-Stimulated Alveolar Type II Cells' Injury through Upregulation of miR-140-3p and Partial Suppression of PD-L1 Involving Inactivating JNK-Bnip3 Pathway.

Dexmedetomidine Attenuates LPS-Stimulated Alveolar Type II Cells' Injury through Upregulation of miR-140-3p and Partial Suppression of PD-L1 Involving Inactivating JNK-Bnip3 Pathway.

Dexmedetomidine Attenuates LPS-Stimulated Alveolar Type II Cells' Injury through Upregulation of miR-140-3p and Partial Suppression of PD-L1 Involving Inactivating JNK-Bnip3 Pathway.

Dexmedetomidine Attenuates LPS-Stimulated Alveolar Type II Cells' Injury through Upregulation of miR-140-3p and Partial Suppression of PD-L1 Involving Inactivating JNK-Bnip3 Pathway.

Dexmedetomidine (DEX), which is reported to be a newly discovered, novel α-2 adrenoceptor agonist, is known to exhibit anti-inflammatory properties in several diseases. DEX regulates inflammation-related signaling pathways and genes through interactions with several miRNAs. This study verified that expression levels of miR-140-3p were diminished when alveolar type II cells were exposed to LPS. However, the levels of miR-140-3p were confirmed as showing an increase with DEX treatment. These observations revealed that the expression of miR-140-3p was related to the beneficial effects that accompanied the DEX treatment of LPS-induced ALI. In addition, PD-1/PD-L1 expression increased extensively when RLE-6TN cells were induced by LPS. The increased expression was reduced after treatment with DEX. Thus, it appears that the PD-L1 expression was targeted directly by miR-140-3p, resulting in the partial repression of PD-L1 levels, which involved the inhibition of p-JNK and Bnip3 expression. Therefore, DEX was shown to inhibit the PD-L1 expression by promoting partially increased miR-140-3p levels in RLE-6TN cells. DEX also inactivated the JNK-Bnip3 pathway, resulting in the inhibition of inflammation and alleviating alveolar type II cell injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian respiratory journal
Canadian respiratory journal 医学-呼吸系统
CiteScore
4.20
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Canadian Respiratory Journal is a peer-reviewed, Open Access journal that aims to provide a multidisciplinary forum for research in all areas of respiratory medicine. The journal publishes original research articles, review articles, and clinical studies related to asthma, allergy, COPD, non-invasive ventilation, therapeutic intervention, lung cancer, airway and lung infections, as well as any other respiratory diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信