基于代谢组学的壮药双路通脑颗粒对缺血性脑梗死大鼠模型的药效学分析。

IF 2.6 4区 医学 Q3 CELL BIOLOGY
Analytical Cellular Pathology Pub Date : 2022-07-05 eCollection Date: 2022-01-01 DOI:10.1155/2022/8776079
Yang Zhai, Yangling Chen, Yihui Luo, Xiaoping Mei, Lin Wu, Xueni Mo, Min Zou, Mingzhao Zhou, Yangling Wu, Guangshan Zheng, Peng Yang, Qingyu He, Rui Chen
{"title":"基于代谢组学的壮药双路通脑颗粒对缺血性脑梗死大鼠模型的药效学分析。","authors":"Yang Zhai,&nbsp;Yangling Chen,&nbsp;Yihui Luo,&nbsp;Xiaoping Mei,&nbsp;Lin Wu,&nbsp;Xueni Mo,&nbsp;Min Zou,&nbsp;Mingzhao Zhou,&nbsp;Yangling Wu,&nbsp;Guangshan Zheng,&nbsp;Peng Yang,&nbsp;Qingyu He,&nbsp;Rui Chen","doi":"10.1155/2022/8776079","DOIUrl":null,"url":null,"abstract":"<p><p>This study used a metabolomic approach to reveal changes in the levels of metabolic biomarkers and related metabolic pathways before and after Zhuang Yao Shuang Lu Tong Nao granule (YHT) treatment in rats with cerebral ischemia. The neurological deficit scores were significantly higher in the MCAO_R group than in the NC group, indicating that the mice had significantly impaired motor functions. The YHT group had significantly lower scores than the MCAO_R group, suggesting that YHT significantly improved motor function in rats. TTC staining of the brain tissue revealed that YHT significantly reduced the area of cerebral infarction in the treated rats. The MCAO_R group was better separated from the NC rent, sham, and YHT groups via metabolomic PCA. Moreover, there were significant differences in the differential metabolites between the MACO_R and YHT groups. Eighteen common differential metabolites were detected between the MACO_R and NC groups, MACO_R and sham groups, and MACO_R and YHT groups, indicating that YHT significantly increased the levels of various metabolites in the serum of cerebral ischemic stroke (CIS) rats. Moreover, a total of 23 metabolic pathways were obtained. We identified 11 metabolic pathways with the most significant effects in the bubble plots. In conclusion, from a systems biology perspective, this metabolomics-based study showed that YHT could be used to treat ischemic stroke by modulating changes in endogenous metabolites.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277214/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomics-Based Pharmacodynamic Analysis of Zhuang Yao Shuang Lu Tong Nao Granules in a Rat Model of Ischemic Cerebral Infarction.\",\"authors\":\"Yang Zhai,&nbsp;Yangling Chen,&nbsp;Yihui Luo,&nbsp;Xiaoping Mei,&nbsp;Lin Wu,&nbsp;Xueni Mo,&nbsp;Min Zou,&nbsp;Mingzhao Zhou,&nbsp;Yangling Wu,&nbsp;Guangshan Zheng,&nbsp;Peng Yang,&nbsp;Qingyu He,&nbsp;Rui Chen\",\"doi\":\"10.1155/2022/8776079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study used a metabolomic approach to reveal changes in the levels of metabolic biomarkers and related metabolic pathways before and after Zhuang Yao Shuang Lu Tong Nao granule (YHT) treatment in rats with cerebral ischemia. The neurological deficit scores were significantly higher in the MCAO_R group than in the NC group, indicating that the mice had significantly impaired motor functions. The YHT group had significantly lower scores than the MCAO_R group, suggesting that YHT significantly improved motor function in rats. TTC staining of the brain tissue revealed that YHT significantly reduced the area of cerebral infarction in the treated rats. The MCAO_R group was better separated from the NC rent, sham, and YHT groups via metabolomic PCA. Moreover, there were significant differences in the differential metabolites between the MACO_R and YHT groups. Eighteen common differential metabolites were detected between the MACO_R and NC groups, MACO_R and sham groups, and MACO_R and YHT groups, indicating that YHT significantly increased the levels of various metabolites in the serum of cerebral ischemic stroke (CIS) rats. Moreover, a total of 23 metabolic pathways were obtained. We identified 11 metabolic pathways with the most significant effects in the bubble plots. In conclusion, from a systems biology perspective, this metabolomics-based study showed that YHT could be used to treat ischemic stroke by modulating changes in endogenous metabolites.</p>\",\"PeriodicalId\":49326,\"journal\":{\"name\":\"Analytical Cellular Pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8776079\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/8776079","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用代谢组学方法,揭示壮药双路通脑颗粒(YHT)治疗脑缺血大鼠前后代谢生物标志物及相关代谢途径的变化。MCAO_R组的神经功能缺损评分明显高于NC组,表明小鼠运动功能明显受损。YHT组得分明显低于MCAO_R组,提示YHT能显著改善大鼠运动功能。脑组织TTC染色显示,YHT显著减少脑梗死面积。通过代谢组学PCA将MCAO_R组与NC rent、sham和YHT组更好地分离。此外,MACO_R组和YHT组之间的差异代谢物也有显著差异。在MACO_R组与NC组、MACO_R组与sham组、MACO_R组与YHT组之间检测到18种共同差异代谢物,表明YHT显著提高了脑缺血大鼠血清中各种代谢物的水平。共获得23条代谢途径。我们在气泡图中确定了11种代谢途径。总之,从系统生物学的角度来看,这项基于代谢组学的研究表明,YHT可以通过调节内源性代谢物的变化来治疗缺血性脑卒中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metabolomics-Based Pharmacodynamic Analysis of Zhuang Yao Shuang Lu Tong Nao Granules in a Rat Model of Ischemic Cerebral Infarction.

Metabolomics-Based Pharmacodynamic Analysis of Zhuang Yao Shuang Lu Tong Nao Granules in a Rat Model of Ischemic Cerebral Infarction.

Metabolomics-Based Pharmacodynamic Analysis of Zhuang Yao Shuang Lu Tong Nao Granules in a Rat Model of Ischemic Cerebral Infarction.

Metabolomics-Based Pharmacodynamic Analysis of Zhuang Yao Shuang Lu Tong Nao Granules in a Rat Model of Ischemic Cerebral Infarction.

This study used a metabolomic approach to reveal changes in the levels of metabolic biomarkers and related metabolic pathways before and after Zhuang Yao Shuang Lu Tong Nao granule (YHT) treatment in rats with cerebral ischemia. The neurological deficit scores were significantly higher in the MCAO_R group than in the NC group, indicating that the mice had significantly impaired motor functions. The YHT group had significantly lower scores than the MCAO_R group, suggesting that YHT significantly improved motor function in rats. TTC staining of the brain tissue revealed that YHT significantly reduced the area of cerebral infarction in the treated rats. The MCAO_R group was better separated from the NC rent, sham, and YHT groups via metabolomic PCA. Moreover, there were significant differences in the differential metabolites between the MACO_R and YHT groups. Eighteen common differential metabolites were detected between the MACO_R and NC groups, MACO_R and sham groups, and MACO_R and YHT groups, indicating that YHT significantly increased the levels of various metabolites in the serum of cerebral ischemic stroke (CIS) rats. Moreover, a total of 23 metabolic pathways were obtained. We identified 11 metabolic pathways with the most significant effects in the bubble plots. In conclusion, from a systems biology perspective, this metabolomics-based study showed that YHT could be used to treat ischemic stroke by modulating changes in endogenous metabolites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信