使用非参数层次贝叶斯模型的医疗监测数据的双聚类。

Stat (International Statistical Institute) Pub Date : 2020-01-01 Epub Date: 2020-03-15 DOI:10.1002/sta4.279
Yan Ren, Siva Sivaganesan, Mekibib Altaye, Raouf S Amin, Rhonda D Szczesniak
{"title":"使用非参数层次贝叶斯模型的医疗监测数据的双聚类。","authors":"Yan Ren,&nbsp;Siva Sivaganesan,&nbsp;Mekibib Altaye,&nbsp;Raouf S Amin,&nbsp;Rhonda D Szczesniak","doi":"10.1002/sta4.279","DOIUrl":null,"url":null,"abstract":"<p><p>In longitudinal studies in which a medical device is used to monitor outcome repeatedly and frequently on the same patients over a prespecified duration of time, two clustering goals can arise. One goal is to assess the degree of heterogeneity among patient profiles. A second yet equally important goal unique to such studies is to determine frequency and duration of monitoring sufficient to identify longitudinal changes. Considering these goals jointly would identify clusters of patients who share similar patterns over time and characterize temporal stability within each cluster. We use a biclustering approach, allowing simultaneous clustering of observations at both patient and time levels and using a nonparametric hierarchical Bayesian model. Because clustering units at the time level (i.e., time points) are ordered and hence unexchangeable, we utilize a multivariate Dirichlet process mixture model by specifying a Dirichlet process prior at the patient level whose base measure employs change points at the time level to achieve the desired joint clustering. We consider structured covariance between consecutive time points and assess model performance through simulation studies. We apply the model to data on 24-hr ambulatory blood pressure monitoring and examine the relationship between diastolic blood pressure and pediatric obstructive sleep apnoea.</p>","PeriodicalId":520780,"journal":{"name":"Stat (International Statistical Institute)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sta4.279","citationCount":"3","resultStr":"{\"title\":\"Biclustering of medical monitoring data using a nonparametric hierarchical Bayesian model.\",\"authors\":\"Yan Ren,&nbsp;Siva Sivaganesan,&nbsp;Mekibib Altaye,&nbsp;Raouf S Amin,&nbsp;Rhonda D Szczesniak\",\"doi\":\"10.1002/sta4.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In longitudinal studies in which a medical device is used to monitor outcome repeatedly and frequently on the same patients over a prespecified duration of time, two clustering goals can arise. One goal is to assess the degree of heterogeneity among patient profiles. A second yet equally important goal unique to such studies is to determine frequency and duration of monitoring sufficient to identify longitudinal changes. Considering these goals jointly would identify clusters of patients who share similar patterns over time and characterize temporal stability within each cluster. We use a biclustering approach, allowing simultaneous clustering of observations at both patient and time levels and using a nonparametric hierarchical Bayesian model. Because clustering units at the time level (i.e., time points) are ordered and hence unexchangeable, we utilize a multivariate Dirichlet process mixture model by specifying a Dirichlet process prior at the patient level whose base measure employs change points at the time level to achieve the desired joint clustering. We consider structured covariance between consecutive time points and assess model performance through simulation studies. We apply the model to data on 24-hr ambulatory blood pressure monitoring and examine the relationship between diastolic blood pressure and pediatric obstructive sleep apnoea.</p>\",\"PeriodicalId\":520780,\"journal\":{\"name\":\"Stat (International Statistical Institute)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sta4.279\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat (International Statistical Institute)\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat (International Statistical Institute)","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在纵向研究中,使用医疗设备在预先规定的时间内反复和频繁地监测同一患者的结果,可能会出现两个聚类目标。目的之一是评估患者资料的异质性程度。这类研究的第二个但同样重要的独特目标是确定监测的频率和持续时间,以确定纵向变化。共同考虑这些目标将确定具有相似模式的患者群,并确定每个群内的时间稳定性。我们使用双聚类方法,允许在患者和时间水平上同时聚类观察,并使用非参数分层贝叶斯模型。由于聚类单元在时间水平上(即时间点)是有序的,因此不可交换,我们利用多元Dirichlet过程混合模型,通过在患者水平上指定一个Dirichlet过程先验,其基本度量使用时间水平上的变化点来实现所需的联合聚类。我们考虑连续时间点之间的结构协方差,并通过模拟研究评估模型的性能。我们将该模型应用于24小时动态血压监测数据,并检查舒张压与儿童阻塞性睡眠呼吸暂停之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biclustering of medical monitoring data using a nonparametric hierarchical Bayesian model.

In longitudinal studies in which a medical device is used to monitor outcome repeatedly and frequently on the same patients over a prespecified duration of time, two clustering goals can arise. One goal is to assess the degree of heterogeneity among patient profiles. A second yet equally important goal unique to such studies is to determine frequency and duration of monitoring sufficient to identify longitudinal changes. Considering these goals jointly would identify clusters of patients who share similar patterns over time and characterize temporal stability within each cluster. We use a biclustering approach, allowing simultaneous clustering of observations at both patient and time levels and using a nonparametric hierarchical Bayesian model. Because clustering units at the time level (i.e., time points) are ordered and hence unexchangeable, we utilize a multivariate Dirichlet process mixture model by specifying a Dirichlet process prior at the patient level whose base measure employs change points at the time level to achieve the desired joint clustering. We consider structured covariance between consecutive time points and assess model performance through simulation studies. We apply the model to data on 24-hr ambulatory blood pressure monitoring and examine the relationship between diastolic blood pressure and pediatric obstructive sleep apnoea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信