Leah J. Taylor-Kearney, Samuel Madden, Jack Wilson, William K. Myers, Dona M. Gunawardana, Elisabete Pires, Philip Holdship, Anthony Tumber, Rosalind E. M. Rickaby and Emily Flashman*,
{"title":"植物半胱氨酸氧化酶在早期陆生植物和藻类中具有保守的感氧功能","authors":"Leah J. Taylor-Kearney, Samuel Madden, Jack Wilson, William K. Myers, Dona M. Gunawardana, Elisabete Pires, Philip Holdship, Anthony Tumber, Rosalind E. M. Rickaby and Emily Flashman*, ","doi":"10.1021/acsbiomedchemau.2c00032","DOIUrl":null,"url":null,"abstract":"<p >All aerobic organisms require O<sub>2</sub> for survival. When their O<sub>2</sub> is limited (hypoxia), a response is required to reduce demand and/or improve supply. A hypoxic response mechanism has been identified in flowering plants: the stability of certain proteins with N-terminal cysteine residues is regulated in an O<sub>2</sub>-dependent manner by the Cys/Arg branch of the N-degron pathway. These include the Group VII ethylene response factors (ERF-VIIs), which can initiate adaptive responses to hypoxia. Oxidation of their N-terminal cysteine residues is catalyzed by plant cysteine oxidases (PCOs), destabilizing these proteins in normoxia; PCO inactivity in hypoxia results in their stabilization. Biochemically, the PCOs are sensitive to O<sub>2</sub> availability and can therefore act as plant O<sub>2</sub> sensors. It is not known whether oxygen-sensing mechanisms exist in other phyla from the plant kingdom. Known PCO targets are only conserved in flowering plants, however PCO-like sequences appear to be conserved in all plant species. We sought to determine whether PCO-like enzymes from the liverwort, <i>Marchantia polymorpha</i> (MpPCO), and the freshwater algae, <i>Klebsormidium nitens</i> (KnPCO), have a similar function as PCO enzymes from <i>Arabidopsis thaliana</i>. We report that MpPCO and KnPCO show O<sub>2</sub>-sensitive N-terminal cysteine dioxygenase activity toward known AtPCO ERF-VII substrates as well as a putative endogenous substrate, MpERF-like, which was identified by homology to the <i>Arabidopsis</i> ERF-VIIs transcription factors. This work confirms functional and O<sub>2</sub>-dependent PCOs from Bryophyta and Charophyta, indicating the potential for PCO-mediated O<sub>2</sub>-sensing pathways in these organisms and suggesting PCO O<sub>2</sub>-sensing function could be important throughout the plant kingdom.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"2 5","pages":"521–528"},"PeriodicalIF":3.8000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585510/pdf/","citationCount":"5","resultStr":"{\"title\":\"Plant Cysteine Oxidase Oxygen-Sensing Function Is Conserved in Early Land Plants and Algae\",\"authors\":\"Leah J. Taylor-Kearney, Samuel Madden, Jack Wilson, William K. Myers, Dona M. Gunawardana, Elisabete Pires, Philip Holdship, Anthony Tumber, Rosalind E. M. Rickaby and Emily Flashman*, \",\"doi\":\"10.1021/acsbiomedchemau.2c00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >All aerobic organisms require O<sub>2</sub> for survival. When their O<sub>2</sub> is limited (hypoxia), a response is required to reduce demand and/or improve supply. A hypoxic response mechanism has been identified in flowering plants: the stability of certain proteins with N-terminal cysteine residues is regulated in an O<sub>2</sub>-dependent manner by the Cys/Arg branch of the N-degron pathway. These include the Group VII ethylene response factors (ERF-VIIs), which can initiate adaptive responses to hypoxia. Oxidation of their N-terminal cysteine residues is catalyzed by plant cysteine oxidases (PCOs), destabilizing these proteins in normoxia; PCO inactivity in hypoxia results in their stabilization. Biochemically, the PCOs are sensitive to O<sub>2</sub> availability and can therefore act as plant O<sub>2</sub> sensors. It is not known whether oxygen-sensing mechanisms exist in other phyla from the plant kingdom. Known PCO targets are only conserved in flowering plants, however PCO-like sequences appear to be conserved in all plant species. We sought to determine whether PCO-like enzymes from the liverwort, <i>Marchantia polymorpha</i> (MpPCO), and the freshwater algae, <i>Klebsormidium nitens</i> (KnPCO), have a similar function as PCO enzymes from <i>Arabidopsis thaliana</i>. We report that MpPCO and KnPCO show O<sub>2</sub>-sensitive N-terminal cysteine dioxygenase activity toward known AtPCO ERF-VII substrates as well as a putative endogenous substrate, MpERF-like, which was identified by homology to the <i>Arabidopsis</i> ERF-VIIs transcription factors. This work confirms functional and O<sub>2</sub>-dependent PCOs from Bryophyta and Charophyta, indicating the potential for PCO-mediated O<sub>2</sub>-sensing pathways in these organisms and suggesting PCO O<sub>2</sub>-sensing function could be important throughout the plant kingdom.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"2 5\",\"pages\":\"521–528\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585510/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Plant Cysteine Oxidase Oxygen-Sensing Function Is Conserved in Early Land Plants and Algae
All aerobic organisms require O2 for survival. When their O2 is limited (hypoxia), a response is required to reduce demand and/or improve supply. A hypoxic response mechanism has been identified in flowering plants: the stability of certain proteins with N-terminal cysteine residues is regulated in an O2-dependent manner by the Cys/Arg branch of the N-degron pathway. These include the Group VII ethylene response factors (ERF-VIIs), which can initiate adaptive responses to hypoxia. Oxidation of their N-terminal cysteine residues is catalyzed by plant cysteine oxidases (PCOs), destabilizing these proteins in normoxia; PCO inactivity in hypoxia results in their stabilization. Biochemically, the PCOs are sensitive to O2 availability and can therefore act as plant O2 sensors. It is not known whether oxygen-sensing mechanisms exist in other phyla from the plant kingdom. Known PCO targets are only conserved in flowering plants, however PCO-like sequences appear to be conserved in all plant species. We sought to determine whether PCO-like enzymes from the liverwort, Marchantia polymorpha (MpPCO), and the freshwater algae, Klebsormidium nitens (KnPCO), have a similar function as PCO enzymes from Arabidopsis thaliana. We report that MpPCO and KnPCO show O2-sensitive N-terminal cysteine dioxygenase activity toward known AtPCO ERF-VII substrates as well as a putative endogenous substrate, MpERF-like, which was identified by homology to the Arabidopsis ERF-VIIs transcription factors. This work confirms functional and O2-dependent PCOs from Bryophyta and Charophyta, indicating the potential for PCO-mediated O2-sensing pathways in these organisms and suggesting PCO O2-sensing function could be important throughout the plant kingdom.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.