五维一般二阶分布的解析扭转。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2022-01-01 Epub Date: 2022-07-26 DOI:10.1007/s12220-022-00987-z
Stefan Haller
{"title":"五维一般二阶分布的解析扭转。","authors":"Stefan Haller","doi":"10.1007/s12220-022-00987-z","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an analytic torsion for the Rumin complex associated with generic rank two distributions on closed 5-manifolds. This torsion behaves as expected with respect to Poincaré duality and finite coverings. We establish anomaly formulas, expressing the dependence on the sub-Riemannian metric and the 2-plane bundle in terms of integrals over local quantities. For certain nilmanifolds, we are able to show that this torsion coincides with the Ray-Singer analytic torsion, up to a constant.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"32 10","pages":"248"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325871/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analytic Torsion of Generic Rank Two Distributions in Dimension Five.\",\"authors\":\"Stefan Haller\",\"doi\":\"10.1007/s12220-022-00987-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose an analytic torsion for the Rumin complex associated with generic rank two distributions on closed 5-manifolds. This torsion behaves as expected with respect to Poincaré duality and finite coverings. We establish anomaly formulas, expressing the dependence on the sub-Riemannian metric and the 2-plane bundle in terms of integrals over local quantities. For certain nilmanifolds, we are able to show that this torsion coincides with the Ray-Singer analytic torsion, up to a constant.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"32 10\",\"pages\":\"248\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-022-00987-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-022-00987-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了闭合5流形上与一般秩2分布相关的Rumin复合体的解析扭转。这种扭转在庞加莱对偶和有限覆盖下的表现与预期一致。我们建立了异常公式,用局部量上的积分来表示对亚黎曼度规和2平面束的依赖。对于某些零流形,我们能够证明这种扭转与Ray-Singer解析扭转一致,直到一个常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic Torsion of Generic Rank Two Distributions in Dimension Five.

We propose an analytic torsion for the Rumin complex associated with generic rank two distributions on closed 5-manifolds. This torsion behaves as expected with respect to Poincaré duality and finite coverings. We establish anomaly formulas, expressing the dependence on the sub-Riemannian metric and the 2-plane bundle in terms of integrals over local quantities. For certain nilmanifolds, we are able to show that this torsion coincides with the Ray-Singer analytic torsion, up to a constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信