测量流行病学研究中邻域环境的机器学习方法。

3区 医学
Current Epidemiology Reports Pub Date : 2022-01-01 Epub Date: 2022-06-30 DOI:10.1007/s40471-022-00296-7
Andrew G Rundle, Michael D M Bader, Stephen J Mooney
{"title":"测量流行病学研究中邻域环境的机器学习方法。","authors":"Andrew G Rundle,&nbsp;Michael D M Bader,&nbsp;Stephen J Mooney","doi":"10.1007/s40471-022-00296-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Innovations in information technology, initiatives by local governments to share administrative data, and growing inventories of data available from commercial data aggregators have immensely expanded the information available to describe neighborhood environments, supporting an approach to research we call Urban Health Informatics. This review evaluates the application of machine learning to this new wealth of data for studies of the effects of neighborhood environments on health.</p><p><strong>Recent findings: </strong>Prominent machine learning applications in this field include automated image analysis of archived imagery such as Google Street View images, variable selection methods to identify neighborhood environment factors that predict health outcomes from large pools of exposure variables, and spatial interpolation methods to estimate neighborhood conditions across large geographic areas.</p><p><strong>Summary: </strong>In each domain, we highlight successes and cautions in the application of machine learning, particularly highlighting legal issues in applying machine learning approaches to Google's geo-spatial data.</p>","PeriodicalId":48527,"journal":{"name":"Current Epidemiology Reports","volume":" ","pages":"175-182"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244309/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approaches for Measuring Neighborhood Environments in Epidemiologic Studies.\",\"authors\":\"Andrew G Rundle,&nbsp;Michael D M Bader,&nbsp;Stephen J Mooney\",\"doi\":\"10.1007/s40471-022-00296-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Innovations in information technology, initiatives by local governments to share administrative data, and growing inventories of data available from commercial data aggregators have immensely expanded the information available to describe neighborhood environments, supporting an approach to research we call Urban Health Informatics. This review evaluates the application of machine learning to this new wealth of data for studies of the effects of neighborhood environments on health.</p><p><strong>Recent findings: </strong>Prominent machine learning applications in this field include automated image analysis of archived imagery such as Google Street View images, variable selection methods to identify neighborhood environment factors that predict health outcomes from large pools of exposure variables, and spatial interpolation methods to estimate neighborhood conditions across large geographic areas.</p><p><strong>Summary: </strong>In each domain, we highlight successes and cautions in the application of machine learning, particularly highlighting legal issues in applying machine learning approaches to Google's geo-spatial data.</p>\",\"PeriodicalId\":48527,\"journal\":{\"name\":\"Current Epidemiology Reports\",\"volume\":\" \",\"pages\":\"175-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Epidemiology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40471-022-00296-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Epidemiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40471-022-00296-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

综述目的:信息技术的创新、地方政府共享行政数据的举措,以及商业数据聚合器提供的不断增长的数据清单,极大地扩展了描述社区环境的可用信息,支持了我们称之为“城市健康信息学”的研究方法。这篇综述评估了机器学习在研究邻里环境对健康影响的新数据财富中的应用。最近的发现:该领域突出的机器学习应用包括对存档图像(如谷歌街景图像)的自动图像分析,从大量暴露变量池中识别预测健康结果的社区环境因素的变量选择方法,以及用于估计大地理区域社区条件的空间插值方法。总结:在每个领域,我们强调了机器学习应用的成功和注意事项,特别是强调了将机器学习方法应用于谷歌地理空间数据的法律问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Approaches for Measuring Neighborhood Environments in Epidemiologic Studies.

Machine Learning Approaches for Measuring Neighborhood Environments in Epidemiologic Studies.

Machine Learning Approaches for Measuring Neighborhood Environments in Epidemiologic Studies.

Purpose of review: Innovations in information technology, initiatives by local governments to share administrative data, and growing inventories of data available from commercial data aggregators have immensely expanded the information available to describe neighborhood environments, supporting an approach to research we call Urban Health Informatics. This review evaluates the application of machine learning to this new wealth of data for studies of the effects of neighborhood environments on health.

Recent findings: Prominent machine learning applications in this field include automated image analysis of archived imagery such as Google Street View images, variable selection methods to identify neighborhood environment factors that predict health outcomes from large pools of exposure variables, and spatial interpolation methods to estimate neighborhood conditions across large geographic areas.

Summary: In each domain, we highlight successes and cautions in the application of machine learning, particularly highlighting legal issues in applying machine learning approaches to Google's geo-spatial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Epidemiology Reports
Current Epidemiology Reports OTORHINOLARYNGOLOGY-
自引率
0.00%
发文量
0
审稿时长
3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信