Christos Chondros, Stavros D Nikolopoulos, Iosif Polenakis
{"title":"预防和减轻由空气传播病原体引起的大流行病的综合模拟框架。","authors":"Christos Chondros, Stavros D Nikolopoulos, Iosif Polenakis","doi":"10.1007/s13721-022-00385-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we developed an integrated simulation framework for pandemic prevention and mitigation of pandemics caused by airborne pathogens, incorporating three sub-models, namely the spatial model, the mobility model, and the propagation model, to create a realistic simulation environment for the evaluation of the effectiveness of different countermeasures on the epidemic dynamics. The spatial model converts images of real cities obtained from Google Maps into undirected weighted graphs that capture the spatial arrangement of the streets utilized next for the mobility of individuals. The mobility model implements a stochastic agent-based approach, developed to assign specific routes to individuals moving in the city, through the use of stochastic processes, utilizing the weights of the underlying graph to deploy shortest path algorithms. The propagation model implements both the epidemiological model and the physical substance of the transmission of an airborne pathogen (in our approach, we investigate the transmission parameters of SARS-CoV-2). The deployment of a set of countermeasures was investigated in reducing the spread of the pathogen, where, through a series of repetitive simulation experiments, we evaluated the effectiveness of each countermeasure in pandemic prevention.</p>","PeriodicalId":44876,"journal":{"name":"Network Modeling and Analysis in Health Informatics and Bioinformatics","volume":" ","pages":"42"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579666/pdf/","citationCount":"1","resultStr":"{\"title\":\"An integrated simulation framework for the prevention and mitigation of pandemics caused by airborne pathogens.\",\"authors\":\"Christos Chondros, Stavros D Nikolopoulos, Iosif Polenakis\",\"doi\":\"10.1007/s13721-022-00385-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we developed an integrated simulation framework for pandemic prevention and mitigation of pandemics caused by airborne pathogens, incorporating three sub-models, namely the spatial model, the mobility model, and the propagation model, to create a realistic simulation environment for the evaluation of the effectiveness of different countermeasures on the epidemic dynamics. The spatial model converts images of real cities obtained from Google Maps into undirected weighted graphs that capture the spatial arrangement of the streets utilized next for the mobility of individuals. The mobility model implements a stochastic agent-based approach, developed to assign specific routes to individuals moving in the city, through the use of stochastic processes, utilizing the weights of the underlying graph to deploy shortest path algorithms. The propagation model implements both the epidemiological model and the physical substance of the transmission of an airborne pathogen (in our approach, we investigate the transmission parameters of SARS-CoV-2). The deployment of a set of countermeasures was investigated in reducing the spread of the pathogen, where, through a series of repetitive simulation experiments, we evaluated the effectiveness of each countermeasure in pandemic prevention.</p>\",\"PeriodicalId\":44876,\"journal\":{\"name\":\"Network Modeling and Analysis in Health Informatics and Bioinformatics\",\"volume\":\" \",\"pages\":\"42\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579666/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Modeling and Analysis in Health Informatics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13721-022-00385-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Modeling and Analysis in Health Informatics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13721-022-00385-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
An integrated simulation framework for the prevention and mitigation of pandemics caused by airborne pathogens.
In this work, we developed an integrated simulation framework for pandemic prevention and mitigation of pandemics caused by airborne pathogens, incorporating three sub-models, namely the spatial model, the mobility model, and the propagation model, to create a realistic simulation environment for the evaluation of the effectiveness of different countermeasures on the epidemic dynamics. The spatial model converts images of real cities obtained from Google Maps into undirected weighted graphs that capture the spatial arrangement of the streets utilized next for the mobility of individuals. The mobility model implements a stochastic agent-based approach, developed to assign specific routes to individuals moving in the city, through the use of stochastic processes, utilizing the weights of the underlying graph to deploy shortest path algorithms. The propagation model implements both the epidemiological model and the physical substance of the transmission of an airborne pathogen (in our approach, we investigate the transmission parameters of SARS-CoV-2). The deployment of a set of countermeasures was investigated in reducing the spread of the pathogen, where, through a series of repetitive simulation experiments, we evaluated the effectiveness of each countermeasure in pandemic prevention.
期刊介绍:
NetMAHIB publishes original research articles and reviews reporting how graph theory, statistics, linear algebra and machine learning techniques can be effectively used for modelling and analysis in health informatics and bioinformatics. It aims at creating a synergy between these disciplines by providing a forum for disseminating the latest developments and research findings; hence, results can be shared with readers across institutions, governments, researchers, students, and the industry. The journal emphasizes fundamental contributions on new methodologies, discoveries and techniques that have general applicability and which form the basis for network based modelling, knowledge discovery, knowledge sharing and decision support to the benefit of patients, healthcare professionals and society in traditional and advanced emerging settings, including eHealth and mHealth .