SLFN11在蛋白稳态中的监测作用。

Oncoscience Pub Date : 2022-07-25 eCollection Date: 2022-01-01 DOI:10.18632/oncoscience.560
Yasuhisa Murai, Ukhyun Jo, Yasuhiro Arakawa, Naoko Takebe, Yves Pommier
{"title":"SLFN11在蛋白稳态中的监测作用。","authors":"Yasuhisa Murai, Ukhyun Jo, Yasuhiro Arakawa, Naoko Takebe, Yves Pommier","doi":"10.18632/oncoscience.560","DOIUrl":null,"url":null,"abstract":"The endoplasmic reticulum (ER) is the organelle that produces functional proteins in eukaryotes. However, increased protein synthesis often causes protein misfolding, leading to ER stress and reciprocal activation of the unfolded protein response (UPR). The ubiquitinproteasome system (UPS) and ER stress-associated protein degradation (ERAD) pathways remove immature proteins. Recently, we demonstrated that Schlafen11 (SLFN11) acts as a surveillance factor for protein homeostasis by alleviating the proteotoxic stress derived from protein synthesis and maturation [1]. Schlafen (“to sleep” in German) is the name of a family of genes encompassing SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13, and SLFN14 in human cells. Among the SLFN family, SLFN11 has been identified as a critical determinant for the cytotoxicity of anticancer agents targeting DNA replication across multiple cancer types. SLFN11 is recruited to damaged replication forks under replication stress. It irreversibly inhibits replication by promoting the destabilization of Cdc45-Mcm2-7-GINS (CMG) helicase complex, degrading the Chromatin Licensing and DNA Replication Factor 1 (CDT1), remodeling chromatin, and inducing immediate early genes [2, 3]. Its lack of expression in ~50% of cancer cells leads to chemoresistance. SLFN11 also plays a pivotal role inhibiting viral infection and tumorigenesis [4, 5] (Figure 1). By screening the NCATS drug library, containing 1978 compounds, we recently reported that TAK-243 (MLN7243), a first-in-class inhibitor of the ubiquitinactivating enzyme UBA1 (also known as UBE1) preferentially suppresses cell proliferation of SLFN11deficient cancer cells [1]. TAK-243 binds free ubiquitin to form irreversible ubiquitin adducts and induces ER and proteotoxic stress [6], thereby leading to cancer cell death. We also found that cancer cells that do not express SLFN11 exhibit increased global protein ubiquitylation, ER stress and UPR compared to SLFN11-proficient cells. The increased susceptibility of SLFN11-deficient cells to TAK-243 was associated with an enhanced activation of the UPR transducers PERK, phosphorylated eIF2α, phosphorylated IRE1 and ATF6. Research Perspective","PeriodicalId":19508,"journal":{"name":"Oncoscience","volume":" ","pages":"35-37"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313520/pdf/","citationCount":"0","resultStr":"{\"title\":\"SLFN11's surveillance role in protein homeostasis.\",\"authors\":\"Yasuhisa Murai, Ukhyun Jo, Yasuhiro Arakawa, Naoko Takebe, Yves Pommier\",\"doi\":\"10.18632/oncoscience.560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endoplasmic reticulum (ER) is the organelle that produces functional proteins in eukaryotes. However, increased protein synthesis often causes protein misfolding, leading to ER stress and reciprocal activation of the unfolded protein response (UPR). The ubiquitinproteasome system (UPS) and ER stress-associated protein degradation (ERAD) pathways remove immature proteins. Recently, we demonstrated that Schlafen11 (SLFN11) acts as a surveillance factor for protein homeostasis by alleviating the proteotoxic stress derived from protein synthesis and maturation [1]. Schlafen (“to sleep” in German) is the name of a family of genes encompassing SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13, and SLFN14 in human cells. Among the SLFN family, SLFN11 has been identified as a critical determinant for the cytotoxicity of anticancer agents targeting DNA replication across multiple cancer types. SLFN11 is recruited to damaged replication forks under replication stress. It irreversibly inhibits replication by promoting the destabilization of Cdc45-Mcm2-7-GINS (CMG) helicase complex, degrading the Chromatin Licensing and DNA Replication Factor 1 (CDT1), remodeling chromatin, and inducing immediate early genes [2, 3]. Its lack of expression in ~50% of cancer cells leads to chemoresistance. SLFN11 also plays a pivotal role inhibiting viral infection and tumorigenesis [4, 5] (Figure 1). By screening the NCATS drug library, containing 1978 compounds, we recently reported that TAK-243 (MLN7243), a first-in-class inhibitor of the ubiquitinactivating enzyme UBA1 (also known as UBE1) preferentially suppresses cell proliferation of SLFN11deficient cancer cells [1]. TAK-243 binds free ubiquitin to form irreversible ubiquitin adducts and induces ER and proteotoxic stress [6], thereby leading to cancer cell death. We also found that cancer cells that do not express SLFN11 exhibit increased global protein ubiquitylation, ER stress and UPR compared to SLFN11-proficient cells. The increased susceptibility of SLFN11-deficient cells to TAK-243 was associated with an enhanced activation of the UPR transducers PERK, phosphorylated eIF2α, phosphorylated IRE1 and ATF6. Research Perspective\",\"PeriodicalId\":19508,\"journal\":{\"name\":\"Oncoscience\",\"volume\":\" \",\"pages\":\"35-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313520/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncoscience.560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncoscience.560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

SLFN11's surveillance role in protein homeostasis.

SLFN11's surveillance role in protein homeostasis.
The endoplasmic reticulum (ER) is the organelle that produces functional proteins in eukaryotes. However, increased protein synthesis often causes protein misfolding, leading to ER stress and reciprocal activation of the unfolded protein response (UPR). The ubiquitinproteasome system (UPS) and ER stress-associated protein degradation (ERAD) pathways remove immature proteins. Recently, we demonstrated that Schlafen11 (SLFN11) acts as a surveillance factor for protein homeostasis by alleviating the proteotoxic stress derived from protein synthesis and maturation [1]. Schlafen (“to sleep” in German) is the name of a family of genes encompassing SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13, and SLFN14 in human cells. Among the SLFN family, SLFN11 has been identified as a critical determinant for the cytotoxicity of anticancer agents targeting DNA replication across multiple cancer types. SLFN11 is recruited to damaged replication forks under replication stress. It irreversibly inhibits replication by promoting the destabilization of Cdc45-Mcm2-7-GINS (CMG) helicase complex, degrading the Chromatin Licensing and DNA Replication Factor 1 (CDT1), remodeling chromatin, and inducing immediate early genes [2, 3]. Its lack of expression in ~50% of cancer cells leads to chemoresistance. SLFN11 also plays a pivotal role inhibiting viral infection and tumorigenesis [4, 5] (Figure 1). By screening the NCATS drug library, containing 1978 compounds, we recently reported that TAK-243 (MLN7243), a first-in-class inhibitor of the ubiquitinactivating enzyme UBA1 (also known as UBE1) preferentially suppresses cell proliferation of SLFN11deficient cancer cells [1]. TAK-243 binds free ubiquitin to form irreversible ubiquitin adducts and induces ER and proteotoxic stress [6], thereby leading to cancer cell death. We also found that cancer cells that do not express SLFN11 exhibit increased global protein ubiquitylation, ER stress and UPR compared to SLFN11-proficient cells. The increased susceptibility of SLFN11-deficient cells to TAK-243 was associated with an enhanced activation of the UPR transducers PERK, phosphorylated eIF2α, phosphorylated IRE1 and ATF6. Research Perspective
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信