含有姜黄素的缓释大豆蛋白纳米颗粒作为骨肉瘤的抗癌剂:合成和表征。

IF 4.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Progress in Biomaterials Pub Date : 2022-09-01 Epub Date: 2022-07-25 DOI:10.1007/s40204-022-00197-4
Hadi Zare-Zardini, Hossein Soltaninejad, Adel Ghorani-Azam, Reza Nafisi-Moghadam, Navid Haddadzadegan, Mojtaba Ansari, Seyed Houssein Saeed-Banadaki, Mohammad Reza Sobhan, Sima Mozafari, Mahlagha Zahedi
{"title":"含有姜黄素的缓释大豆蛋白纳米颗粒作为骨肉瘤的抗癌剂:合成和表征。","authors":"Hadi Zare-Zardini,&nbsp;Hossein Soltaninejad,&nbsp;Adel Ghorani-Azam,&nbsp;Reza Nafisi-Moghadam,&nbsp;Navid Haddadzadegan,&nbsp;Mojtaba Ansari,&nbsp;Seyed Houssein Saeed-Banadaki,&nbsp;Mohammad Reza Sobhan,&nbsp;Sima Mozafari,&nbsp;Mahlagha Zahedi","doi":"10.1007/s40204-022-00197-4","DOIUrl":null,"url":null,"abstract":"<p><p>Curcumin-containing soy protein nanoparticles (curcumin-SPNs) were synthesized by desolvation (coacervation) method and characterized by SEM, DLS, FTIR, and XRD. For anticancer evaluation, osteogenic sarcoma (SAOS2) cell lines were incubated with different concentrations of nanostructures. The dialysis method was used for assessment of drug release. Intracellular reactive oxygen species (ROS) were evaluated in IC50 dose after 24 h of exposure to free curcumin and curcumin-SPNs. Characterization data showed that the size of drug-free SPNs and curcumin-SPNs were 278.2 and 294.7 nm, respectively. The zeta potential of drug-free SPNs and curcumin-SPNs were - 37.1 and - 36.51 mv, respectively. There was no significant difference between the control and drug-free SPNs groups in terms of cell viability (p > 0.05). The viability of cells in different concentrations of the designed curcumin-SPNs in Saos2 cell line was significantly higher than free drug (p < 0.05). The release of curcumin showed that more than 50% of the drug was released in the first 2 h of incubation. After this time, the slow release of drug was continued to 62-83% of drug. IC50 values of free curcumin and curcumin-SPNs (1/10) were 156.8 and 65.9 µg/mL, respectively (a free curcumin IC50 was 2.4 times more than curcumin-SPNs). Slow-release of the curcumin causes the cell to be exposed to the anticancer drug for a longer period of time. The intracellular ROS levels significantly increased in an IC50 dose after 24 h of exposure to both free curcumin and curcumin-SPNs compared with controls (p < 0.05).</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374868/pdf/40204_2022_Article_197.pdf","citationCount":"7","resultStr":"{\"title\":\"Slow release curcumin-containing soy protein nanoparticles as anticancer agents for osteosarcoma: synthesis and characterization.\",\"authors\":\"Hadi Zare-Zardini,&nbsp;Hossein Soltaninejad,&nbsp;Adel Ghorani-Azam,&nbsp;Reza Nafisi-Moghadam,&nbsp;Navid Haddadzadegan,&nbsp;Mojtaba Ansari,&nbsp;Seyed Houssein Saeed-Banadaki,&nbsp;Mohammad Reza Sobhan,&nbsp;Sima Mozafari,&nbsp;Mahlagha Zahedi\",\"doi\":\"10.1007/s40204-022-00197-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Curcumin-containing soy protein nanoparticles (curcumin-SPNs) were synthesized by desolvation (coacervation) method and characterized by SEM, DLS, FTIR, and XRD. For anticancer evaluation, osteogenic sarcoma (SAOS2) cell lines were incubated with different concentrations of nanostructures. The dialysis method was used for assessment of drug release. Intracellular reactive oxygen species (ROS) were evaluated in IC50 dose after 24 h of exposure to free curcumin and curcumin-SPNs. Characterization data showed that the size of drug-free SPNs and curcumin-SPNs were 278.2 and 294.7 nm, respectively. The zeta potential of drug-free SPNs and curcumin-SPNs were - 37.1 and - 36.51 mv, respectively. There was no significant difference between the control and drug-free SPNs groups in terms of cell viability (p > 0.05). The viability of cells in different concentrations of the designed curcumin-SPNs in Saos2 cell line was significantly higher than free drug (p < 0.05). The release of curcumin showed that more than 50% of the drug was released in the first 2 h of incubation. After this time, the slow release of drug was continued to 62-83% of drug. IC50 values of free curcumin and curcumin-SPNs (1/10) were 156.8 and 65.9 µg/mL, respectively (a free curcumin IC50 was 2.4 times more than curcumin-SPNs). Slow-release of the curcumin causes the cell to be exposed to the anticancer drug for a longer period of time. The intracellular ROS levels significantly increased in an IC50 dose after 24 h of exposure to both free curcumin and curcumin-SPNs compared with controls (p < 0.05).</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374868/pdf/40204_2022_Article_197.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-022-00197-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00197-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7

摘要

采用脱溶(凝聚)法制备了含姜黄素的大豆蛋白纳米颗粒(姜黄素- spns),并用SEM、DLS、FTIR和XRD对其进行了表征。为了评估其抗癌作用,我们用不同浓度的纳米结构培养成骨肉瘤(SAOS2)细胞系。采用透析法评价药物释放情况。在暴露于游离姜黄素和姜黄素spn 24 h后,以IC50剂量评估细胞内活性氧(ROS)。表征数据显示,无药spn和姜黄素spn的大小分别为278.2 nm和294.7 nm。无药spn和姜黄素spn的zeta电位分别为- 37.1 mv和- 36.51 mv。对照组与无药SPNs组细胞活力差异无统计学意义(p > 0.05)。不同浓度姜黄素- spns对Saos2细胞株的细胞活力均显著高于游离药物(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slow release curcumin-containing soy protein nanoparticles as anticancer agents for osteosarcoma: synthesis and characterization.

Curcumin-containing soy protein nanoparticles (curcumin-SPNs) were synthesized by desolvation (coacervation) method and characterized by SEM, DLS, FTIR, and XRD. For anticancer evaluation, osteogenic sarcoma (SAOS2) cell lines were incubated with different concentrations of nanostructures. The dialysis method was used for assessment of drug release. Intracellular reactive oxygen species (ROS) were evaluated in IC50 dose after 24 h of exposure to free curcumin and curcumin-SPNs. Characterization data showed that the size of drug-free SPNs and curcumin-SPNs were 278.2 and 294.7 nm, respectively. The zeta potential of drug-free SPNs and curcumin-SPNs were - 37.1 and - 36.51 mv, respectively. There was no significant difference between the control and drug-free SPNs groups in terms of cell viability (p > 0.05). The viability of cells in different concentrations of the designed curcumin-SPNs in Saos2 cell line was significantly higher than free drug (p < 0.05). The release of curcumin showed that more than 50% of the drug was released in the first 2 h of incubation. After this time, the slow release of drug was continued to 62-83% of drug. IC50 values of free curcumin and curcumin-SPNs (1/10) were 156.8 and 65.9 µg/mL, respectively (a free curcumin IC50 was 2.4 times more than curcumin-SPNs). Slow-release of the curcumin causes the cell to be exposed to the anticancer drug for a longer period of time. The intracellular ROS levels significantly increased in an IC50 dose after 24 h of exposure to both free curcumin and curcumin-SPNs compared with controls (p < 0.05).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Biomaterials
Progress in Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
9.60
自引率
4.10%
发文量
35
期刊介绍: Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信