T细胞早期发育过程中E蛋白对TCR重排和表达的直接调控。

IF 4.6 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
WIREs Mechanisms of Disease Pub Date : 2022-11-01 Epub Date: 2022-07-18 DOI:10.1002/wsbm.1578
Michele K Anderson, Juliana Dutra Barbosa da Rocha
{"title":"T细胞早期发育过程中E蛋白对TCR重排和表达的直接调控。","authors":"Michele K Anderson,&nbsp;Juliana Dutra Barbosa da Rocha","doi":"10.1002/wsbm.1578","DOIUrl":null,"url":null,"abstract":"<p><p>γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αβ T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αβ/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αβ T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct regulation of TCR rearrangement and expression by E proteins during early T cell development.\",\"authors\":\"Michele K Anderson,&nbsp;Juliana Dutra Barbosa da Rocha\",\"doi\":\"10.1002/wsbm.1578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αβ T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αβ/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αβ T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.</p>\",\"PeriodicalId\":29896,\"journal\":{\"name\":\"WIREs Mechanisms of Disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Mechanisms of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1578\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1578","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

γδT细胞广泛分布于粘膜和上皮细胞丰富的组织中,是IL-17对几种病原体反应的重要早期来源。与αβT细胞一样,γδT细胞在胸腺中经历一个逐步的发育过程,需要重组基因组编码的片段来组装成熟的T细胞受体(TCR)基因。这一过程在多个层面上受到严格控制,以实现TCR片段组装,同时防止在这一过程中发生的双链DNA断裂所固有的基因组不稳定性。每个TCR基因座在结构和需求方面都有独特的方面,在αβ/γδT细胞命运选择前后有不同类型的调节。众所周知,Runx和Myb是TCRγ和TCRδ表达的关键转录调控因子,但E蛋白在TCRγ、TCRδ调控中的作用尚不清楚。多种证据表明,E蛋白在许多不同水平上参与TCR的表达,包括Rag重组酶基因表达和蛋白稳定性的调节、种系V段表达的诱导、染色质重塑以及胎儿和成人γδTCR库的限制。重要的是,E蛋白直接与TCRγ和TCRδ基因座的顺式调节元件相互作用,控制细胞成为αβT细胞或γδT细胞的倾向,甚至在决定TCR信号事件的谱系之前。这篇文章分类在:免疫系统疾病>干细胞和发育免疫系统疾病>遗传学/基因组学/表观遗传学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Direct regulation of TCR rearrangement and expression by E proteins during early T cell development.

Direct regulation of TCR rearrangement and expression by E proteins during early T cell development.

γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αβ T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αβ/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αβ T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WIREs Mechanisms of Disease
WIREs Mechanisms of Disease MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
11.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信