{"title":"利用基于支持向量机的集成特征选择方法对基因表达数据进行分析。","authors":"Shizhi Zhang, Mingjin Zhang","doi":"10.1515/sagmb-2022-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Gene selection is one of the key steps for gene expression data analysis. An SVM-based ensemble feature selection method is proposed in this paper. Firstly, the method builds many subsets by using Monte Carlo sampling. Secondly, ranking all the features on each of the subsets and integrating them to obtain a final ranking list. Finally, the optimum feature set is determined by a backward feature elimination strategy. This method is applied to the analysis of 4 public datasets: the Leukemia, Prostate, Colorectal, and SMK_CAN, resulting 7, 10, 13, and 32 features. The AUC obtained from independent test sets are 0.9867, 0.9796, 0.9571, and 0.9575, respectively. These results indicate that the features selected by the proposed method can improve sample classification accuracy, and thus be effective for gene selection from gene expression data.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of SVM-based ensemble feature selection method for gene expression data analysis.\",\"authors\":\"Shizhi Zhang, Mingjin Zhang\",\"doi\":\"10.1515/sagmb-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene selection is one of the key steps for gene expression data analysis. An SVM-based ensemble feature selection method is proposed in this paper. Firstly, the method builds many subsets by using Monte Carlo sampling. Secondly, ranking all the features on each of the subsets and integrating them to obtain a final ranking list. Finally, the optimum feature set is determined by a backward feature elimination strategy. This method is applied to the analysis of 4 public datasets: the Leukemia, Prostate, Colorectal, and SMK_CAN, resulting 7, 10, 13, and 32 features. The AUC obtained from independent test sets are 0.9867, 0.9796, 0.9571, and 0.9575, respectively. These results indicate that the features selected by the proposed method can improve sample classification accuracy, and thus be effective for gene selection from gene expression data.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2022-0002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2022-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Use of SVM-based ensemble feature selection method for gene expression data analysis.
Gene selection is one of the key steps for gene expression data analysis. An SVM-based ensemble feature selection method is proposed in this paper. Firstly, the method builds many subsets by using Monte Carlo sampling. Secondly, ranking all the features on each of the subsets and integrating them to obtain a final ranking list. Finally, the optimum feature set is determined by a backward feature elimination strategy. This method is applied to the analysis of 4 public datasets: the Leukemia, Prostate, Colorectal, and SMK_CAN, resulting 7, 10, 13, and 32 features. The AUC obtained from independent test sets are 0.9867, 0.9796, 0.9571, and 0.9575, respectively. These results indicate that the features selected by the proposed method can improve sample classification accuracy, and thus be effective for gene selection from gene expression data.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.