{"title":"薛定谔算子的阿格蒙-阿列格雷托-皮彭布林克原理","authors":"Stefano Buccheri, Luigi Orsina, Augusto C Ponce","doi":"10.1007/s13398-022-01293-7","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that each Borel function <math><mrow><mi>V</mi> <mo>:</mo> <mi>Ω</mi> <mo>→</mo> <mo>[</mo> <mrow><mo>-</mo> <mi>∞</mi></mrow> <mo>,</mo> <mo>+</mo> <mi>∞</mi> <mo>]</mo></mrow> </math> defined on an open subset <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </mrow> </math> induces a decomposition <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>S</mi> <mo>∪</mo> <msub><mo>⋃</mo> <mi>i</mi></msub> <msub><mi>D</mi> <mi>i</mi></msub> </mrow> </math> such that every function in <math> <mrow><msubsup><mi>W</mi> <mn>0</mn> <mrow><mn>1</mn> <mo>,</mo> <mn>2</mn></mrow> </msubsup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> <mo>∩</mo> <msup><mi>L</mi> <mn>2</mn></msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>;</mo> <msup><mi>V</mi> <mo>+</mo></msup> <mspace></mspace> <mi>d</mi> <mi>x</mi> <mo>)</mo></mrow> </mrow> </math> is zero almost everywhere on <i>S</i> and existence of nonnegative supersolutions of <math><mrow><mo>-</mo> <mi>Δ</mi> <mo>+</mo> <mi>V</mi></mrow> </math> on each component <math><msub><mi>D</mi> <mi>i</mi></msub> </math> yields nonnegativity of the associated quadratic form <math> <mrow><msub><mo>∫</mo> <msub><mi>D</mi> <mi>i</mi></msub> </msub> <msup><mrow><mo>(</mo> <mo>|</mo> <mi>∇</mi> <mi>ξ</mi> <mo>|</mo></mrow> <mn>2</mn></msup> <mo>+</mo> <mi>V</mi> <msup><mi>ξ</mi> <mn>2</mn></msup> <mrow><mo>)</mo> <mo>.</mo></mrow> </mrow></math>.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"116 4","pages":"151"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279265/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Agmon-Allegretto-Piepenbrink principle for Schrödinger operators.\",\"authors\":\"Stefano Buccheri, Luigi Orsina, Augusto C Ponce\",\"doi\":\"10.1007/s13398-022-01293-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove that each Borel function <math><mrow><mi>V</mi> <mo>:</mo> <mi>Ω</mi> <mo>→</mo> <mo>[</mo> <mrow><mo>-</mo> <mi>∞</mi></mrow> <mo>,</mo> <mo>+</mo> <mi>∞</mi> <mo>]</mo></mrow> </math> defined on an open subset <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>N</mi></msup> </mrow> </math> induces a decomposition <math><mrow><mi>Ω</mi> <mo>=</mo> <mi>S</mi> <mo>∪</mo> <msub><mo>⋃</mo> <mi>i</mi></msub> <msub><mi>D</mi> <mi>i</mi></msub> </mrow> </math> such that every function in <math> <mrow><msubsup><mi>W</mi> <mn>0</mn> <mrow><mn>1</mn> <mo>,</mo> <mn>2</mn></mrow> </msubsup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> <mo>∩</mo> <msup><mi>L</mi> <mn>2</mn></msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>;</mo> <msup><mi>V</mi> <mo>+</mo></msup> <mspace></mspace> <mi>d</mi> <mi>x</mi> <mo>)</mo></mrow> </mrow> </math> is zero almost everywhere on <i>S</i> and existence of nonnegative supersolutions of <math><mrow><mo>-</mo> <mi>Δ</mi> <mo>+</mo> <mi>V</mi></mrow> </math> on each component <math><msub><mi>D</mi> <mi>i</mi></msub> </math> yields nonnegativity of the associated quadratic form <math> <mrow><msub><mo>∫</mo> <msub><mi>D</mi> <mi>i</mi></msub> </msub> <msup><mrow><mo>(</mo> <mo>|</mo> <mi>∇</mi> <mi>ξ</mi> <mo>|</mo></mrow> <mn>2</mn></msup> <mo>+</mo> <mi>V</mi> <msup><mi>ξ</mi> <mn>2</mn></msup> <mrow><mo>)</mo> <mo>.</mo></mrow> </mrow></math>.</p>\",\"PeriodicalId\":54471,\"journal\":{\"name\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"volume\":\"116 4\",\"pages\":\"151\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-022-01293-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-022-01293-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,每个 Borel 函数 V :Ω → [ - ∞ , + ∞ ] 定义在开放子集 Ω ⊂ R N 上,会诱导一个分解 Ω = S∪ ⋃ i D i,使得 W 0 1 , 2 ( Ω ) ∩ L 2 ( Ω ;V + d x ) 在 S 上几乎处处为零,并且在每个分量 D i 上存在 - Δ + V 的非负超解,从而得到相关二次型 ∫ D i ( |∇ ξ | 2 + V ξ 2 ) 的非负性。.
An Agmon-Allegretto-Piepenbrink principle for Schrödinger operators.
We prove that each Borel function defined on an open subset induces a decomposition such that every function in is zero almost everywhere on S and existence of nonnegative supersolutions of on each component yields nonnegativity of the associated quadratic form .
期刊介绍:
The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.