{"title":"Fisher-Kolmogorov模型的非消失锐前行波解。","authors":"Maud El-Hachem, Scott W McCue, Matthew J Simpson","doi":"10.1093/imammb/dqac004","DOIUrl":null,"url":null,"abstract":"<p><p>The Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\\sqrt {\\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model. First, these travelling wave solutions do not predict a well-defined invasion front. Second, biologically relevant initial conditions lead to travelling waves that move with speed $c=2\\sqrt {\\lambda D}> 0$. This means that, for biologically relevant initial data, the Fisher-KPP model cannot be used to study invasion with $c \\ne 2\\sqrt {\\lambda D}$, or retreating travelling waves with $c < 0$. Here, we reformulate the Fisher-KPP model as a moving boundary problem and show that this reformulated model alleviates the key limitations of the Fisher-KPP model. Travelling wave solutions of the moving boundary problem predict a well-defined front that can propagate with any wave speed, $-\\infty < c < \\infty $. Here, we establish these results using a combination of high-accuracy numerical simulations of the time-dependent partial differential equation, phase plane analysis and perturbation methods. All software required to replicate this work is available on GitHub.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model.\",\"authors\":\"Maud El-Hachem, Scott W McCue, Matthew J Simpson\",\"doi\":\"10.1093/imammb/dqac004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\\\\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\\\\sqrt {\\\\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model. First, these travelling wave solutions do not predict a well-defined invasion front. Second, biologically relevant initial conditions lead to travelling waves that move with speed $c=2\\\\sqrt {\\\\lambda D}> 0$. This means that, for biologically relevant initial data, the Fisher-KPP model cannot be used to study invasion with $c \\\\ne 2\\\\sqrt {\\\\lambda D}$, or retreating travelling waves with $c < 0$. Here, we reformulate the Fisher-KPP model as a moving boundary problem and show that this reformulated model alleviates the key limitations of the Fisher-KPP model. Travelling wave solutions of the moving boundary problem predict a well-defined front that can propagate with any wave speed, $-\\\\infty < c < \\\\infty $. Here, we establish these results using a combination of high-accuracy numerical simulations of the time-dependent partial differential equation, phase plane analysis and perturbation methods. All software required to replicate this work is available on GitHub.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqac004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqac004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model.
The Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\sqrt {\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model. First, these travelling wave solutions do not predict a well-defined invasion front. Second, biologically relevant initial conditions lead to travelling waves that move with speed $c=2\sqrt {\lambda D}> 0$. This means that, for biologically relevant initial data, the Fisher-KPP model cannot be used to study invasion with $c \ne 2\sqrt {\lambda D}$, or retreating travelling waves with $c < 0$. Here, we reformulate the Fisher-KPP model as a moving boundary problem and show that this reformulated model alleviates the key limitations of the Fisher-KPP model. Travelling wave solutions of the moving boundary problem predict a well-defined front that can propagate with any wave speed, $-\infty < c < \infty $. Here, we establish these results using a combination of high-accuracy numerical simulations of the time-dependent partial differential equation, phase plane analysis and perturbation methods. All software required to replicate this work is available on GitHub.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology