Fisher-Kolmogorov模型的非消失锐前行波解。

Maud El-Hachem, Scott W McCue, Matthew J Simpson
{"title":"Fisher-Kolmogorov模型的非消失锐前行波解。","authors":"Maud El-Hachem,&nbsp;Scott W McCue,&nbsp;Matthew J Simpson","doi":"10.1093/imammb/dqac004","DOIUrl":null,"url":null,"abstract":"<p><p>The Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\\sqrt {\\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model. First, these travelling wave solutions do not predict a well-defined invasion front. Second, biologically relevant initial conditions lead to travelling waves that move with speed $c=2\\sqrt {\\lambda D}> 0$. This means that, for biologically relevant initial data, the Fisher-KPP model cannot be used to study invasion with $c \\ne 2\\sqrt {\\lambda D}$, or retreating travelling waves with $c < 0$. Here, we reformulate the Fisher-KPP model as a moving boundary problem and show that this reformulated model alleviates the key limitations of the Fisher-KPP model. Travelling wave solutions of the moving boundary problem predict a well-defined front that can propagate with any wave speed, $-\\infty < c < \\infty $. Here, we establish these results using a combination of high-accuracy numerical simulations of the time-dependent partial differential equation, phase plane analysis and perturbation methods. All software required to replicate this work is available on GitHub.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":"226-250"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model.\",\"authors\":\"Maud El-Hachem,&nbsp;Scott W McCue,&nbsp;Matthew J Simpson\",\"doi\":\"10.1093/imammb/dqac004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\\\\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\\\\sqrt {\\\\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model. First, these travelling wave solutions do not predict a well-defined invasion front. Second, biologically relevant initial conditions lead to travelling waves that move with speed $c=2\\\\sqrt {\\\\lambda D}> 0$. This means that, for biologically relevant initial data, the Fisher-KPP model cannot be used to study invasion with $c \\\\ne 2\\\\sqrt {\\\\lambda D}$, or retreating travelling waves with $c < 0$. Here, we reformulate the Fisher-KPP model as a moving boundary problem and show that this reformulated model alleviates the key limitations of the Fisher-KPP model. Travelling wave solutions of the moving boundary problem predict a well-defined front that can propagate with any wave speed, $-\\\\infty < c < \\\\infty $. Here, we establish these results using a combination of high-accuracy numerical simulations of the time-dependent partial differential equation, phase plane analysis and perturbation methods. All software required to replicate this work is available on GitHub.</p>\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\" \",\"pages\":\"226-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqac004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqac004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Fisher-Kolmogorov-Petrovsky-Piskunov (KPP)模型及其推广涉及生物入侵的简单反应扩散方程,该方程假设种群中的个体经历具有扩散率$D$的线性扩散和具有速率$\lambda $的logistic扩散。对于Fisher-KPP模型,生物学相关的初始条件导致以速度$c=2\sqrt {\lambda D}$移动的长行波解。尽管有这些吸引人的特点,但Fisher-KPP模型的行波解有几个生物学上的限制。首先,这些行波解不能预测一个明确的入侵前沿。第二,与生物学相关的初始条件导致以速度移动的行波$c=2\sqrt {\lambda D}> 0$。这意味着,对于生物学相关的初始数据,Fisher-KPP模型不能用于研究$c \ne 2\sqrt {\lambda D}$的入侵,或$c < 0$的撤退行波。在这里,我们将Fisher-KPP模型重新表述为一个移动边界问题,并表明这个重新表述的模型缓解了Fisher-KPP模型的关键局限性。移动边界问题的行波解预测了一个可以以任何波速传播的定义良好的锋面,$-\infty < c < \infty $。在这里,我们结合高精度的时变偏微分方程数值模拟、相平面分析和微扰方法建立了这些结果。复制这项工作所需的所有软件都可以在GitHub上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-vanishing sharp-fronted travelling wave solutions of the Fisher-Kolmogorov model.

The Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\sqrt {\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model. First, these travelling wave solutions do not predict a well-defined invasion front. Second, biologically relevant initial conditions lead to travelling waves that move with speed $c=2\sqrt {\lambda D}> 0$. This means that, for biologically relevant initial data, the Fisher-KPP model cannot be used to study invasion with $c \ne 2\sqrt {\lambda D}$, or retreating travelling waves with $c < 0$. Here, we reformulate the Fisher-KPP model as a moving boundary problem and show that this reformulated model alleviates the key limitations of the Fisher-KPP model. Travelling wave solutions of the moving boundary problem predict a well-defined front that can propagate with any wave speed, $-\infty < c < \infty $. Here, we establish these results using a combination of high-accuracy numerical simulations of the time-dependent partial differential equation, phase plane analysis and perturbation methods. All software required to replicate this work is available on GitHub.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信