{"title":"将新的生理数据整合到先天性心脏手术的决策中","authors":"Osami Honjo","doi":"10.1053/j.pcsu.2022.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Optimal decision-making to determine the type and timing of surgical intervention for various congenital heart disease (CHD) requires adequate understanding and interpretation of anatomic and physiologic data obtained from various imaging modalities. Cardiac magnetic resonance (CMR) has revolutionized the way we evaluate the anatomy and physiology of CHD. In addition to 2- and 3-dimensional anatomic data and volumetry, phase-contrast CMR allows quantitative measurements of cardiac output, pulmonary blood flow, pulmonary-to-systemic flow ratio, the amount of intracardiac shunt, valve regurgitation, and aortopulmonary collateral flows. This review article describes the utilization of CMR-derived flow data in surgical decision-making in three distinct subgroups: (1) patients with borderline left ventricle (LV) with emphasis on the ascending aortic flow and other physiologic parameters, (2) single ventricle patients who undergo bidirectional cavopulmonary shunt with emphasis on the impact of superior vena cava blood flow on postoperative physiology, and (3) patients with pulmonary atresia and major aortopulmonary collateral arteries with emphasis on the impact of total pulmonary blood flow and systemic-to-pulmonary flow ratio on clinical outcomes.</p></div>","PeriodicalId":38774,"journal":{"name":"Pediatric Cardiac Surgery Annual","volume":"25 ","pages":"Pages 19-27"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating Novel Physiologic Data into Decision-Making in Congenital Heart Surgery\",\"authors\":\"Osami Honjo\",\"doi\":\"10.1053/j.pcsu.2022.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimal decision-making to determine the type and timing of surgical intervention for various congenital heart disease (CHD) requires adequate understanding and interpretation of anatomic and physiologic data obtained from various imaging modalities. Cardiac magnetic resonance (CMR) has revolutionized the way we evaluate the anatomy and physiology of CHD. In addition to 2- and 3-dimensional anatomic data and volumetry, phase-contrast CMR allows quantitative measurements of cardiac output, pulmonary blood flow, pulmonary-to-systemic flow ratio, the amount of intracardiac shunt, valve regurgitation, and aortopulmonary collateral flows. This review article describes the utilization of CMR-derived flow data in surgical decision-making in three distinct subgroups: (1) patients with borderline left ventricle (LV) with emphasis on the ascending aortic flow and other physiologic parameters, (2) single ventricle patients who undergo bidirectional cavopulmonary shunt with emphasis on the impact of superior vena cava blood flow on postoperative physiology, and (3) patients with pulmonary atresia and major aortopulmonary collateral arteries with emphasis on the impact of total pulmonary blood flow and systemic-to-pulmonary flow ratio on clinical outcomes.</p></div>\",\"PeriodicalId\":38774,\"journal\":{\"name\":\"Pediatric Cardiac Surgery Annual\",\"volume\":\"25 \",\"pages\":\"Pages 19-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Cardiac Surgery Annual\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1092912622000011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Cardiac Surgery Annual","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1092912622000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Integrating Novel Physiologic Data into Decision-Making in Congenital Heart Surgery
Optimal decision-making to determine the type and timing of surgical intervention for various congenital heart disease (CHD) requires adequate understanding and interpretation of anatomic and physiologic data obtained from various imaging modalities. Cardiac magnetic resonance (CMR) has revolutionized the way we evaluate the anatomy and physiology of CHD. In addition to 2- and 3-dimensional anatomic data and volumetry, phase-contrast CMR allows quantitative measurements of cardiac output, pulmonary blood flow, pulmonary-to-systemic flow ratio, the amount of intracardiac shunt, valve regurgitation, and aortopulmonary collateral flows. This review article describes the utilization of CMR-derived flow data in surgical decision-making in three distinct subgroups: (1) patients with borderline left ventricle (LV) with emphasis on the ascending aortic flow and other physiologic parameters, (2) single ventricle patients who undergo bidirectional cavopulmonary shunt with emphasis on the impact of superior vena cava blood flow on postoperative physiology, and (3) patients with pulmonary atresia and major aortopulmonary collateral arteries with emphasis on the impact of total pulmonary blood flow and systemic-to-pulmonary flow ratio on clinical outcomes.
期刊介绍:
The Pediatric Cardiac Surgery Annual is a companion to Seminars in Thoracic and Cardiovascular Surgery . Together with the Seminars, the Annual provides complete coverage of the specialty by focusing on important developments in pediatric cardiac surgery. Each annual volume has an expert guest editor who invites prominent surgeons to review the areas of greatest change in pediatric cardiac surgery during the year. Topics include 1) Complete Atrioventricular Canal; 2) New Concepts of Cardiac Anatomy and Function -- The Helical Heart; 3) Valve Reconstruction (Replacement) in Congenital Heart Disease; 4) Evolving Developments in Congenital Heart Surgery.